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a b s t r a c t

Most existing works on specification testing assume that we have direct observations
from the model of interest. We study specification testing for Markov models based on
contaminated observations. The evolving model dynamics of the unobservable Markov
chain is implicitly coded into the conditional distribution of the observed process. To test
whether the underlying Markov chain follows a parametric model, we propose measuring
the deviation between nonparametric and parametric estimates of conditional regression
functions of the observed process. Specifically, we construct a nonparametric simultaneous
confidence band for conditional regression functions and check whether the parametric
estimate is contained within the band.
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1. Introduction

Let {Xi}i∈N be a real-valued stationary time series of interest. In some applications, {Xi} may not be directly observable
and instead we observe a contaminated version {Yi}:

Yi = Xi + εi, i = 1, 2, . . . , n, (1)

where {εi} are independent and identically distributed (i.i.d.) measurement errors. For example, (1) has been proposed to
explain the microstructure noise phenomenon observed in high-frequency financial data [3,29,21,24]. Another example is
the widely used stochastic volatility model in financial econometrics:

Yi = σiεi, (2)

where {σi > 0} is an unobservable volatility process. For example, Taylor [27] proposed an AR(1) model for log(σ 2
i ) :

log(σ 2
i ) = a log(σ 2

i−1)+ηi. In general, with the transformation Y ∗

i = log(Y 2
i ), Xi = log(σ 2

i ), ε
∗

i = log(ε2i ), then (2) becomes
the measurement errors model:

Y ∗

i = Xi + ε∗

i . (3)
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In the vast literature on errors-in-variables or measurement errors models, the central goal has been to study parameter
estimation and inference of parametric regressions in the presence of measurement errors on the covariates; see the
monographs Fuller [15] and Carroll et al. [6] and the recent survey paper Chen et al. [7] for an extensive account of related
contributions. Unlike the aforementioned works, our focus is on inferring the model dynamics of the unobservable process
{Xi}.

The main purpose of this article is to address specification testing regarding the underlying data-generating mechanism,
denoted by Q, that generates {Xi} based on the contaminated observations {Yi}. Specifically, we are interested in testing

H0 : Q = Qθ , for a parametric specification Qθ with unknown parameter θ. (4)

Parametric models can provide a parsimonious interpretation of the model dynamics, but a mis-specification of the
underlying model may result in wrong conclusions. Therefore, it is necessary to validate the adequacy of the parametric
model before employing it.

There is an extensive literature on specification testing but most existing works are concentrated on the case that data
of interest are directly observable. Some representative works include pseudo-likelihood ratio test [4], square distance
between parametric and nonparametric estimate [17], residuals-based tests [10,20], generalized likelihood ratio test [13],
and density based approaches [1,16,19,2]. In the above works, direct observations from the model of interest are available,
a feature unfortunately not shared by (1).

Due to the non-observability and dependence of {Xi}, the aforementioned methods are not applicable and it is a difficult
task to address specification testing regarding Q. To address this issue, we impose a Markovian assumption on {Xi}. Markov
chains are used in awide range of fields, ranging from quantitative fields such as econometrics and statistics tomore applied
fields such as biology and engineering. In econometrics, one important example is the nonlinear autoregressive conditional
heteroscedastic model

Xi = µ(Xi−1)+ s(Xi−1)ηi, (5)

for i.i.d. errors {ηi}i∈Z. Given different specifications of (µ, s), (5) includes many popular models, such as threshold au-
toregressive models and autoregressive conditional heteroscedastic models. Another example is discrete samples from the
diffusion model

dXt = µ(Xt)dt + s(Xt)dWt , t ≥ 0, (6)

where {Wt}t≥0 is a standard Brownian motion. This model includes many widely used financial models, see Zhao [30] for a
review.

In this article, we propose a conditional expectation generator based approach to address the specification testing
problem (4). Our approach is motivated by three facts: (i) the evolving dynamics of the unobservable Markov chain {Xi}

is characterized by its transition density, denoted by qX (x′
|x); (ii) the transition density qX (x′

|x) of {Xi} is implicitly coded
into the conditional density, denoted by qY (y′

|y), of Yi given Yi−1; and (iii) furthermore, qY (y′
|y) is coded into the conditional

expectation

Gg(y) = E[g(Yi)|Yi−1 = y], (7)

for proper transformations g(·). To address specification testing for hidden Markov models, Zhao [31] compared the
parametric estimate of qY (y′

|y) to its nonparametric estimate. UsingGg(y) instead of qY (y′
|y) has some practical advantages.

In terms of the sample size, in order to estimate the two-dimensional function qY (y′
|y)nonparametrically, Zhao [31] required

a relatively large sample size in the order of thousands; by contrast, the proposed conditional expectation based method
works reasonably well for a moderate sample size (for example, 200) in simulation studies. For bandwidth selection, it
is a more challenging issue to choose the bandwidths in nonparametric conditional density estimation, while there are
well-studied standard bandwidth selections for nonparametric mean regression; see, e.g., Li and Racine [23] for detailed
discussions. Furthermore, it is practically more convenient to compare the univariate function Gg(y) than the bivariate
function qY (y′

|y).
The main component of our methodology is the construction of a nonparametric simultaneous confidence band (SCB)

for Gg(y). The constructed nonparametric SCB does not depend on any specific model structure and hence can serve as a
true reference. To test (4), we then check whether the parametric estimate of Gg(y) under H0 is contained within the non-
parametric SCB. The problem of SCB construction has been studied previously for marginal density of independent data [5],
nonparametric regression function for both independent data [22,8,12] and time series data [32]. For hidden Markov mod-
els, Zhao [31] studied SCB for conditional density function. Our development on SCB for Gg(y) under the Markov-chain
measurement-error model involves novel technical developments. The main argument is to decompose summation of de-
pendent variables into a leading summation of martingale differences and a negligible error term. Unlike the nonparametric
kernel density estimation case where the summands are uniformly bounded, nonparametric kernel smoothing estimate of
the regression function Gg(y) involves unbounded terms and is significantly more challenging to deal with.

Throughout, for a random variable Z , we write Z ∈ Lq, q > 0, if ∥Z∥q := [E(|Z |
q)]1/q < ∞; for z ∈ R, write ⌊z⌋ as

the integer part of z. Section 2 presents the main methodology. Section 3 contains simulation studies. Technical proofs are
provided in Section 4.
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2. Methodology

For convenience, we gather some notations below, which are used throughout the paper,

• pX (x, x′): the joint density function of (Xi−1, Xi);
• qX (x′

|x): the conditional density function of Xi given Xi−1 = x;
• pY (y, y′): the joint density function of (Yi−1, Yi);
• qY (y′

|y): the conditional density function of Yi given Yi−1 = y;
• fY (·): the density function of Yi;
• qε(·): the density function of εi.

For theMarkov chain {Xi}, its evolving dynamics is characterized by the joint density function pX (x, x′) of (Xi−1, Xi). Since
{Xi} is unobservable, we propose extracting information about pX (x, x′) from the observed chain {Yi}. In (1), we assume that
the measurement errors {εi}i∈Z are i.i.d. and independent of the Markov chain {Xi}i∈Z.

Recall the conditional expectation operator Gg defined in (7). Our method is motivated by the following result:

Proposition 1. Let ε be a random sample from qε(·) independent of (Xi−1, Xi). Then

Gg(y) =
E[g(Xi + ε)qε(y − Xi−1)]

E[qε(y − Xi−1)]
. (8)

By Proposition 1, Gg(y) contains rich information about the joint density of (Xi−1, Xi), and different choices of g(·) can
extract different information. For example, g1(Yi) = Yi and g2(Yi) = Y 2

i extract information from the first two conditional
moments, and gt(Yi) = 1Yi≤t , t ∈ R, extracts information from the conditional distribution; see Section 2.3 for more
discussions.

Motivated by (8), we introduce our conditional expectation based approach to address the specification testing problem
(4). First, we apply nonparametric kernel smoothing methods to construct a nonparametric estimate of Gg(y), denoted by
Ĝg(y). Without imposing any specific model structure, Ĝg(y) is always a consistent estimate of Gg(y) and hence can be used
as a reference quantity. Under H0, we use the right hand side of (8) to construct a parametric estimate of Gg(y), denoted
by Gg(y|Qθ̂ ), where θ̂ is a consistent estimate of θ . To test H0, we examine the distance between the parametric estimate
Gg(y|Qθ̂ ) and the nonparametric reference Ĝg(y), with a large discrepancy indicating rejection of H0.

To determine the critical value, we use the idea of simultaneous confidence band (SCB). For a significance levelα ∈ (0, 1),
we say that [ln(·), un(·)] is an asymptotic (1 − α) nonparametric SCB for G(y) on a given compact set Y ⊂ R if

lim
n→∞

P{ln(y) ≤ Gg(y) ≤ un(y), for all y ∈ Y} = 1 − α. (9)

Intuitively, the function Gg(·) is contained within the nonparametric band [ln(·), un(·)]with asymptotic probability (1−α).
Aswill be illustrated in Section 2.1, nonparametric SCB ofGg(·) usually centers at a nonparametric estimate Ĝg(y). Therefore,
the band [ln(·), un(·)] with center Ĝg(y) provides an acceptance region for H0. If the parametric estimate Gg(y|Qθ̂ ) under H0

falls outside the band, then the deviation between Ĝg(y) and Gg(y|Qθ̂ ) is too large to be in favor of H0. Clearly, the concept
of SCB is an extension of the classical confidence interval for a one-dimensional parameter (e.g., the population mean) to a
function.

We now summarize our nonparametric SCB based specification testing procedure:

(i) Apply nonparametric methods to construct a nonparametric estimate Ĝg(y) of Gg(y), and then use Ĝg(y) to build a
(1 − α) nonparametric SCB for Gg(y), denoted by [ℓn(·), un(·)].

(ii) Under H0, apply parametric methods to obtain an estimate θ̂ of θ , and further use the right hand side of (8) to obtain a
parametric estimate Gg(y|Qθ̂ ) of Gg(y).

(iii) Check whether ln(y) ≤ Gg(y|Qθ̂ ) ≤ un(y) holds for all y ∈ Y, or equivalently, whether Gg(y|Qθ̂ ) is contained within
the constructed SCB. If no, we reject H0 at level α.

In Sections 2.1 and 2.2, we construct nonparametric SCB and parametric estimate of Gg(y), respectively; Section 2.3
discusses choices of g(·) and the Bonferroni correction.

Remark 1. Although the underlying process {Xi} is a Markov chain, the observed process {Yi} is no longer a Markov chain
and thus its distributional property cannot be completely characterized by the one-step conditional distribution of Yi given
Yi−1. To incorporate more distributional information, in light of (7), one may consider Gg(y1, . . . , yk) = E[g(Yi)|Yi−1 =

y1, . . . , Yi−k = yk] for some given k. However, due to the well-known curse of dimensionality, it is practically infeasible to
nonparametrically estimate the latter multivariate function. Thus, we shall not pursue this direction.
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2.1. Nonparametric simultaneous confidence band

Consider the Nadaraya–Watson estimate of Gg(y):

Ĝg(y) =

n
i=1

g(Yi)Kbn(y − Yi−1)

n
i=1

Kbn(y − Yi−1)

, (10)

where and hereafter Kbn(u) = K(u/bn) for a kernel function K satisfying


R K(u)du = 1 and bandwidth bn > 0. To study
asymptotic properties of Ĝg(y), we define the conditional variance function σ 2

g (y) and impose Conditions 1–3 as follows:

σ 2
g (y) = E{[g(Yi)− Gg(Yi−1)]

2
|Yi−1 = y}. (11)

Condition 1 (Kernel Assumption). The kernel K is bounded, symmetric, and has bounded derivative and support [−ω,ω].
Write ϕK =

 ω
−ω

K 2(u)du and ψK =
 ω
−ω

u2K(u)du.

Condition 2 (Regularity Assumption). Without loss of generality, let Y = [−T , T ] for some T > 0. There exists some small
ϵ > 0 such that fY (y) > 0 and Gg(y) have bounded fourth order derivative on Yϵ := [−T − ϵ, T + ϵ], and that σ 2

g (y) > 0
has bounded derivative on Yϵ . The measurement errors {εi}i∈Z are i.i.d. and independent of the Markov chain {Xi}i∈Z. The
density function qε of εi is bounded and has bounded derivative on R.

Condition 3 (Dependence Assumption).Theunobservable process {Xi} is anα-mixing stationaryMarkov chainwithα-mixing
coefficients αk, k ∈ N. Assume that g(Yi) ∈ Lδ for some δ ≥ 4 and


∞

k=1 α
1−2/δ
k < ∞.

Definition 1. Let τn → 0 andmn → ∞. We say that Yn ⊂ Y is a (τn,mn) approximation of Y if: (i) Yn containsmn distinct
points from Y; (ii) the distance between any two points from Yn is at least τn; and (iii) the distance between Yn and Y goes
to zero as n → ∞.

Theorem 1 establishes a maximal deviation result for Ĝg(y), which can be used to construct a nonparametric SCB for
Ĝg(y).

Theorem 1. Assume that Conditions 1–3 hold and nb9n log n + (nb3n)
−1 log n → 0. Then for any (τn,mn) approximation Yn of

Y such that bn = o(τn) and (log n)3[(nbn)−1
+ b2n]m

2
n → 0,

lim
n→∞

P

sup
y∈Yn


nbnfY (y)
ϕKσ 2

g (y)

1/2Ĝg(y)− Gg(y)− ρg(y)b2n
 ≤ Bmn(z)

 = e−2e−z
, (12)

for z ∈ R, where σ 2
g (y) is defined in (11), ρg(y) = [f ′

Y (y)G
′
g(y)/fY (y)+ G′′

g (y)/2]ψK , and

Bmn(z) =

2 logmn −

1
√
2 logmn

1
2
log logmn + log(2

√
π)− z


.

Now we discuss estimation of σ 2
g (y) and fY (y). To estimate fY (y), we use the nonparametric kernel density estimator:

f̂Y (y) =
1
nln

n
i=1

Kln(y − Yi), (13)

for a bandwidth ln > 0. Based on residuals g(Yi)− Ĝg(Yi−1), we propose the Nadaraya–Watson kernel smoothing estimate
of σ 2

g (y) in (11):

σ̂ 2
g (y) =

n
i=1

[g(Yi)− Ĝg(Yi−1)]
2Khn(y − Yi−1)

n
i=1

Khn(y − Yi−1)

, (14)

where Khn(u) = K(u/hn) for another bandwidth hn > 0.
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Proposition 2. (i) Under Conditions 1–3 and l4n log n + (nln)−1(log n)2 → 0, we have

sup
y∈Y

|f̂Y (y)− fY (y)| = op[(log n)−1/2
].

(ii) Assume that Conditions 1–3 hold. Further assume nb8n(log n)
2
+ (nb4n)

−1(log n)6 → 0 and h4
n log n+ (nh2

n)
−1(log n)3 → 0.

Then we have

sup
y∈Y

|σ̂ 2
g (y)− σ 2

g (y)| = op[(log n)−1/2
].

We point out that, from the proof of Proposition 2, the bound op[(log n)−1/2
] can be substantially improved. For brevity,

we present the loose bound op[(log n)−1/2
] since it is enough for our asymptotic results.

Due to the unknown derivatives f ′

Y (y),G
′
g(y) and G′′

g (y), it is generally difficult to estimate the bias ρg(y)b2n in Theorem 1.
To address this issue, we adopt a bias-correction procedure so that it is not necessary to estimate the second-order bias; see
Section 3 for more details. Thus, combining Theorem 1 and Proposition 2, Corollary 1 provides an asymptotic (1 − α) SCB
for Gg(y).

Corollary 1. Under the conditions in Theorem 1 and Proposition 2, an asymptotic (1 − α) SCB for Gg(y) on the region Yn with
the bias-correction can be constructed as

Ĝg(y)±


ϕK σ̂

2
g (y)

nbn f̂Y (y)

1/2

Bmn(zα), y ∈ Yn, (15)

where zα = − log log[(1 − α)−1/2
] is the (1 − α) quantile of the limiting distribution in (12).

By Definition 1, Yn becomes denser and denser in Y as n → ∞. Thus, the constructed SCB on Yn provides a good
approximation to (9) for sufficiently large n. For any fixed c > 0, let mn = ⌊2T/[c(log n)2bn]⌋ and

Yn = {yj = −T + c(log n)2bnj, j = 0, 1, . . . ,mn − 1}.

ThenYn is a (τn,mn) approximation ofYwith τn = c(log n)2bn. It is easily seen that, undernb8n(log n)
2
+(nb4n)

−1(log n)6 → 0
in Proposition 2, the conditions bn = o(τn) and (log n)3[(nbn)−1

+ b2n]m
2
n → 0 in Theorem 1 automatically hold.

2.2. Parametric estimate under H0 : Q = Qθ

In this section we develop a general procedure to construct parametric estimate of Gg(y) under H0 : Q = Qθ . Without
further assumptions, it is generally impossible to use (8) to construct a parametric estimate of Gg(y). For example, Fan [9]
assumed that εi has an exactly known density function in order to study the nonparametric de-convolution problem of
estimating the density of Xi based on noisy observations Yi from (1). Here we assume that εi has the normal distribution
N(0, σ 2) for some unknown variance σ 2 > 0. Denote by φ(z) the standard normal density, and write φσ (z) = σ−1φ(z/σ).
Then qε(z) = φσ (z).

In practice, there is generally no closed-form expression for the joint density of (Xi−1, Xi) for most time series models,
and thus it is infeasible to evaluate the expectations on the right hand side of (8) directly. For example, even for the simplest
threshold autoregressive model Xi = a1Xi−11Xi−1≤0 + a2Xi−11Xi−1>0 + ηi with i.i.d. errors ηi ∼ N(0, 1), the stationary joint
density remains unknown. To solve this issue, we propose a Monte Carlo simulation based method below.

(i) Under H0 : Q = Qθ , obtain consistent estimate of (θ, σ ), denoted by (θ̂ , σ̂ ). Under the parametric specification, a
natural parameter estimationmethod is themaximum likelihood estimator, whichmay be computationally expensive.
In some cases, it is computationally appealing to use, for example, moments based methods.

(ii) Simulate sample path {X∗

i }0≤i≤m from the estimated null model Qθ̂ .
(iii) Let εi be i.i.d. N(0, σ̂ 2) variables. Using empirical version of (8), we propose

Ĝg(y|Qθ̂ ) =

m−1
m
i=1

g(X∗

i + εi)φσ̂ (y − X∗

i−1)

m−1
m
i=1
φσ̂ (y − X∗

i−1)

.

For large m, the numerator and the denominator of Ĝ(y|Qθ̂ ) approach their expectations.

As an illustration, we consider (5) with ηi ∼ N(0, 1). LetQ = (µ, s) andQθ = (µθ , sθ ) for some parametric specification
(µθ , sθ ). Then step (ii) above is implemented using

X∗

i = µθ̂ (X
∗

i−1)+ sθ̂ (X
∗

i−1)ηi, ηi ∼ N(0, 1).
Clearly, the above proposed procedure can be readily extended to the case of non-Gaussian errors. We simply replace φσ̂

with another given parametric density with estimated parameters and draw εi from the latter density.
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2.3. Choices of the transformation g(·) and Bonferroni correction

In (7), different choices of g(·) can extract different information about the underlying distribution. In many practical
problems, the conditional mean and conditional variance are the two most important pieces of information researchers are
interested in. For example, in model (5) with i.i.d. ηi ∼ N(0, 1), the conditional mean function µ(·) and the conditional
variance function s2(·) fully determine the model structure. Similarly, in model (6), µ(·) and s2(·) represent the conditional
drift (mean) function and conditional volatility (variance) function, respectively, and they fully characterize the underlying
model. To study the underlyingmodel dynamics in (5) and (6),we letQ = (µ, s) andH0 : Q = Qθ = (µθ , sθ ) for parametric
specifications (µθ , σθ ).

Motivated by the above discussion, we propose using two simple transformations g1(Yi) = Yi and g2(Yi) = Y 2
i . By

combining the two transformations together, the test can detect deviations from the conditional mean and/or conditional
variance in the underlying model. To combine the two corresponding tests together, we adopt the following procedure:

(Bonferroni correction): Suppose the pre-specified significance level is α, then we construct (1 − α/2) SCBs, denoted by
SCB1 and SCB2, for Gg1(y) and Gg2(y) separately, and reject H0 if either SCB1 or SCB2 cannot cover the corresponding parametric
estimates for Gg1(y) or Gg2(y).

Theoretically speaking, we can combine tests across multiple transformations. For example, one natural choice is to
combine multiple conditional moments, i.e., gk(Yi) = Y k

i , k = 1, . . . , J , for some J ∈ N. However, we do not recommend
this approach based on three considerations. First, the Bonferroni correction is well-known to be very conservative for
multiple tests. Second, as discussed above, for the two most popular Markov models (5) and (6), the conditional mean and
the conditional variance contain all important information and higher-order moments do not provide extra information.
Third, using high-order moments would require high-order finite-moment assumptions, which may be too restrictive in
practice.

2.4. Alternative approaches: conditional distribution or conditional characteristic function

Some alternative approaches are to use a class of transformations g(·) indexed by a continuous parameter. For example,
gt(Yi) = 1Yi≤t for t ∈ R corresponds to the conditional distribution function, and gt(Yi) = exp(

√
−1Yit) for t ∈ R

corresponds to the conditional characteristic function. Under different contexts, Hong [18] and Pinkse [25] used empirical
characteristic functions to test for serial dependence. In our SCB setting, using such choices of transformations involves
studying maximum deviations of Ĝgt (y) over both t ∈ R and y ∈ R. With gt(Yi) = 1Yi≤t , we expect that, after proper
normalization, the process {Ĝgt (y)}t∈R with any fixed y converges in distribution in the Skorokhod space D[−∞,+∞] to
the process {B(QY (t|y))}t∈R, where B is the standard Brownian bridge and QY (t|y) is the conditional distribution function of
Yi given Yi−1 = y. Therefore, by the continuous mapping theorem, we can handle the supremum over t ∈ R. Unfortunately,
it is unclear how to dealwith the supremumover y ∈ R. Furthermore, in order to establish the latter functional convergence,
we need to prove the tightness of the process. It seems that substantial theoretical developments are necessary andwe leave
them for future research.

3. Monte Carlo simulation study

In this section, we conduct a small simulation study to examine the empirical performance of the proposed specification
test. First, we address some practical implementation issues.

(Bias-correction): We adopt a higher-order kernel to remove the second-order bias term ρg(y)b2n in Theorem 1. Let
φ(u) be the standard normal density function. In our numerical analysis, we use the kernel function K(u) = 2φ(u) −

φ(u/
√
2)/

√
2, which is symmetric and satisfies


R K(u)du = 1 and ψK =


R u2K(u)du = 0 so that ρg(y) = 0.

Remark 2. The higher-order kernel above can remove the second order bias, but the fourth order bias is still present. The
bias issue is an intrinsic feature of any nonparametric regression methods, and there seems to be no satisfactory approach
to address it. Our small simulation study shows that the above simple approach works reasonably well.

(Bandwidth selection): To select the bandwidth bn in (10), we use the leave-one-out cross validation with the criterion
of minimum mean squared error in [23, Chapter 2.2.2], which is implemented using the command localpoly.reg in R.
To choose hn in (14), first we obtain the residuals g(Yi)− Ĝg(Yi−1) using the selected bandwidth bn. Then, the leave-one-out
cross validation is employed again based on the nonparametric regression of [g(Yi) − Ĝg(Yi−1)]

2 on Yi−1. For ln in (13), we
use the rule-of-thumb nonparametric kernel density bandwidth selector in [26], which is implemented using the command
bw.nrd0 in R.

We compare the empirical performance of the proposed specification tests based on different transformations g(·):

(i) Test 1: using the single transformation g1(Yi) = Yi;
(ii) Test 2: using the single transformation g2(Yi) = Y 2

i ;
(iii) Test 3: combining the two transformations g1 and g2 with the Bonferroni correction.
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Table 1
Empirical power: Test 1, Test 2, and Test 3 stand for the proposed specification tests based on SCB with g1(Yi) = Yi, g2(Yi) = Y 2

i , and combining the two
transformations together with the Bonferroni correction, respectively. Significance level is 5%.

n λ

0.0 0.2 0.4 0.6 0.8 1.0

Model 1 200 Test 1 0.039 0.090 0.278 0.525 0.695 0.838
Test 2 0.038 0.021 0.038 0.054 0.054 0.068
Test 3 0.038 0.042 0.181 0.358 0.558 0.738

500 Test 1 0.029 0.159 0.532 0.866 0.965 0.997
Test 2 0.052 0.037 0.043 0.075 0.113 0.090
Test 3 0.037 0.098 0.379 0.752 0.921 0.985

2000 Test 1 0.063 0.637 0.989 1.000 1.000 1.000
Test 2 0.018 0.086 0.255 0.358 0.428 0.532
Test 3 0.042 0.503 0.974 1.000 1.000 1.000

Model 2 200 Test 1 0.039 0.047 0.041 0.053 0.083 0.106
Test 2 0.038 0.033 0.047 0.099 0.150 0.210
Test 3 0.038 0.042 0.045 0.082 0.119 0.186

500 Test 1 0.029 0.024 0.030 0.056 0.115 0.218
Test 2 0.052 0.042 0.049 0.103 0.245 0.429
Test 3 0.037 0.036 0.043 0.082 0.204 0.386

2000 Test 1 0.063 0.085 0.110 0.152 0.235 0.321
Test 2 0.018 0.049 0.170 0.447 0.784 0.946
Test 3 0.042 0.069 0.147 0.367 0.716 0.917

In (1), we generate {Xi} from the following true models:

(Model 1) Xi = 0.6[(1 − λ)Xi−1 + λ|Xi−1|] + ηi, λ ∈ [0, 1],

(Model 2) Xi = 0.6Xi−1 + ηi


1 + 0.3λX2

i−1, λ ∈ [0, 1],

for i.i.d. noises ηi ∼ N(0, 1). We wish to test the null hypothesis H0 : Xi = θ1Xi−1 + ηi based on contaminated observations
{Yi} from (1) with i.i.d. measurement errors εi ∼ N(0, 1). The parameter λ regulates the deviation from the null model.
The case λ = 0 leads to the null model; as λ increases, Model 1 and Model 2 move further away from the null model.
In particular, for λ ≠ 0, Model 1 becomes the threshold autoregressive model, and Model 2 becomes the autoregressive
conditional heteroscedastic model with a linear term. Model 1 and Model 2 are used to examine the sensitivity of the test
to deviations in the conditional mean function and conditional variance function, respectively.

Under H0, we need to estimate θ1 and the variances of ηi and εi, denoted by θ22 and θ23 , respectively. Then elementary
calculations show that

E(Y 2
i ) =

θ22

1 − θ21
+ θ23 , cov(Yi−1, Yi) =

θ1θ
2
2

1 − θ21
, cov(Yi−2, Yi) =

θ21 θ
2
2

1 − θ21
.

Thus, we can estimate the parameters (θ1, θ2, θ3) by the empirical versions of moments. We simulate 1000 realizations
with sample size n = 200, 500, 2000 and significance level α = 0.05. In (15), we need to select a set Yn of grid points. For
a realization {Yi}, let l0.15 and l0.85 be their 15 and 85 percentiles, respectively. We take Yn to be the set of 11 evenly spaced
grid points yi = l0.15 + i(l0.85 − l0.15)/10, i = 0, . . . , 10 for n = 2000, and similarly we use the set of 5 and 7 evenly spaced
grid points for n = 200 and n = 500, respectively.

The result is presented in Table 1. We see that, Test 1 based on the transformation g1 is muchmore powerful in detecting
deviations in the conditional mean (Model 1) than in detecting deviations in the conditional variance (Model 2). Similarly,
Test 2 based on g2 is more powerful in detecting deviations in the conditional variance. By contrast, Test 3 based on
combining g1 and g2 through the Bonferroni correction can detect both deviations well. Moreover, the empirical size of
Test 3 is quite close to the nominal size 0.05, and the power rises dramatically as the deviation parameter λ increases. This
small simulation study demonstrates that the proposed test using the two transformations g1 and g2 with the Bonferroni
correction works quite well.

4. Proofs

4.1. Proof of Proposition 1

Proof of Proposition 1. Recall the notations pX , qX , pY , qY , fY , qε at the beginning of Section 2. Conditioning on (Xi−1,
Xi), Yi−1 and Yi are conditionally independent and have density qε(y − Xi−1) and qε(y′

− Xi), respectively. Thus, pY (y, y′) =

E[qε(y − Xi−1)qε(y′
− Xi)]. By the latter identity and the independence between ε and (Xi−1, Xi),

R
g(y′)pY (y, y′)dy′

= E

qε(y − Xi−1)


R
g(y′)qε(y′

− Xi)dy′


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z=y′−Xi
= E


qε(y − Xi−1)


R
g(Xi + z)qε(z)dz


= E{qε(y − Xi−1)E[g(Xi + ε)|Xi−1, Xi]}

= E[g(Xi + ε)qε(y − Xi−1)]. (16)

By conditioning on Xi−1, we can show fY (y) = E[qε(y − Xi−1)]. Therefore, the desired result follows from (16) and
Gg(y) =


R g(y′)qY (y′

|y)dy′
=


R g(y′)pY (y, y′)dy′/fY (y). ♦

4.2. Some preliminary facts of projection operator

For convenience, we recall some basic properties of conditional expectations. Let Z ∈ L1 be any integrable random
variable and F a σ -algebra on the same probability space. Then

(C1) E(Z) = E[E(Z |F )].
(C2) Let G be another σ -algebra such that F ⊂ G. Then E(Z |F ) = E[E(Z |G)|F ].
(C3) If Z ∈ Lp for some p ≥ 1, then ∥E(|Z ||F )∥p ≤ ∥Z∥p and (E|Z |)p ≤ E(|Z |

p).

Recall that, in (1), {εi} are i.i.d. and independent of the unobservable Markov chain {Xi}. Let Fi = σ(εj, Xj+1 : j ≤ i) be
the σ -algebra generated by εj, Xj+1, j ≤ i. Then {Fi}i∈Z is an increasing filtration. For i ∈ Z, define the projection operator
Pi by

PiZ = E(Z |Fi)− E(Z |Fi−1), Z ∈ L1.

The projection operator Pi satisfies the following properties (in the statements below, {Zi}i∈Z is any sequence of random
variables):

(C4) For any {Zi ∈ L1
}i∈Z, {PiZi}i∈Z are martingale differences with respect to the increasing filtration {Fi}i∈Z. Thus,n

i=1 PiZi is a martingale with respect to Fn.
(C5) For any {Zi ∈ L2

}i∈Z, ∥
n

i=1 PiZi∥2
2 =

n
i=1 ∥PiZi∥2

2.
(C6) For any Z ∈ L2, ∥PiZ∥

2
2 ≤ ∥E(Z |Fi)∥

2
2 ≤ ∥Z∥

2
2.

(C7) For any Z ∈ L2,E[(PiZ)2|Fi−1] = E{[E(Z |Fi)]
2
|Fi−1} − [E(Z |Fi−1)]

2.
(C8) For any Z ∈ L2,E[(PiZ)2|Fi−1] ≤ E(Z2

|Fi−1).

Proof. By definition, PiZi is Fi-measurable. Furthermore, by property (C2), E(PiZi|Fi−1) = E[E(Zi|Fi)|Fi−1]−E(Zi|Fi−1) =

0. Thus, (C4) holds. By (C4), (C5) follows from the orthogonality of martingale differences. To see (C6), let Z∗
= E(Z |Fi)

E(Z |Fi−1), by property (C2), E(Z∗
|Fi−1) = [E(Z |Fi−1)]

2. Thus, E(Z∗) = E[E(Z∗
|Fi−1)] = E{[E(Z |Fi−1)]

2
}. Using the latter

identity, we can show ∥PiZ∥
2
2 = E{[E(Z |Fi)]

2
} − E{[E(Z |Fi−1)]

2
} ≤ ∥E(Z |Fi)∥

2
2 ≤ ∥Z∥

2
2, where the last inequality follows

from property (C3). By simple calculations, (C7) follows from the definition of Pi and property (C2). Finally, by (C7), (C8)
follows from E[(PiZ)2|Fi−1] ≤ E{[E(Z |Fi)]

2
|Fi−1} ≤ E{E(Z2

|Fi)|Fi−1} = E(Z2
|Fi−1). ♦

By (C4), {Pi}i∈Z are martingale difference operators with respect to {Fi}i∈Z. This idea of martingale construction serves
as the building block for our technical arguments. See Wu [28] for more discussions.

4.3. Some preliminary results on mixing processes

In Condition 3, we impose α-mixing conditions on {Xi}. Lemmas 1–2 present some useful results for α-mixing processes.

Lemma 1 (Proposition 2.5 in [11]). Let U and V be two random variables such that U ∈ Lp and V ∈ Lq for some p > 1, q > 1,
and 1/p + 1/q < 1. Then

|cov(U, V )| ≤ 8α(U, V )1−1/p−1/q
∥U∥p∥V∥q.

Here α(U, V ) is the α-mixing coefficient between the two σ -algebras generated by U and V .

Next, we present an important inequality regarding the supremumof any differentiable function f (·) on a given bounded
interval [a, b]. Note that |f (y)| = |f (a)+

 y
a f ′(z)dz| ≤ |f (a)|+

 b
a |f ′(z)|dz for all y ∈ [a, b]. Thus, using (u+v)2 ≤ 2(u2

+v2)

and the Cauchy–Schwarz inequality [
 b
a |f ′(z)|dz]2 ≤ (b − a)

 b
a |f ′(z)|2dz, we have the uniform bound:

sup
y∈[a,b]

|f (y)|2 ≤ 2


|f (a)|2 +

 b

a
|f ′(z)|dz

2
≤ 2


|f (a)|2 + (b − a)

 b

a
|f ′(z)|2dz


. (17)
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Clearly, if f (·) is a random function, then taking expectation on both sides of (17) gives sup
y∈[a,b]

|f (y)|


2

2

≤ 2


∥f (a)∥2

2 + (b − a)
 b

a
∥f ′(z)∥2

2dz



≤ 2


∥f (a)∥2

2 + (b − a)2 sup
y∈[a,b]

∥f ′(y)∥2
2


. (18)

In (18), while it is generally difficult to study the left hand side with ‘‘sup’’ inside ∥ · ∥2, it is much easier to handle the right
hand side with ‘‘sup’’ outside ∥ · ∥2. Thus, (18) provides a useful inequality in bounding the supremum of random processes
indexed by a continuous parameter. In particular, we can obtain the following useful result:

Lemma 2. Let {Xi}i∈N be an α-mixing stationary process with mixing coefficient αk, k ∈ N. For a bivariate measurable and
differentiable function h, define

H(y) =

n
i=1


h(y, Xi)− E[h(y, Xi)]


.

Suppose there exists some δ > 2 such that c := supy∈R[∥h(y, X1)∥δ + ∥∂h(y, X1)/∂y∥δ] < ∞ and


∞

k=1 α
1−2/δ
k < ∞. Let

[a, b] be any given bounded interval. Then

E


sup

y∈[a,b]
|H(y)|2


= O(n). (19)

Furthermore, if bn → 0 andw(·) is an integrable function with bounded support, then

E


sup

y∈[a,b]


R
w(u)H(y − ubn)du

2

= O(n). (20)

Proof. Let γk = cov{h(y, X1), h(y, Xk+1)}. Then γ0 ≤ ∥h(y, X1)∥
2
2 ≤ ∥h(y, X1)∥

2
δ ≤ c2. For k ≥ 1, by Lemma 1, |γk| ≤

8α1−2/δ
k ∥h(y, X1)∥

2
δ ≤ 8α1−2/δ

k c2. Thus,

∥H(y)∥2
2 = nγ0 + 2

n−1
k=1

(n − k)γk ≤ n


γ0 + 2

n
k=1

|γk|


≤ nc2


1 + 16

∞
k=1

α
1−2/δ
k


. (21)

Similarly, using H ′(y) =
n

i=1{∂h(y, Xi)/∂y − E[∂h(y, Xi)/∂y]}, we have

∥H ′(y)∥2
2 ≤ nc2


1 + 16

∞
k=1

α
1−2/δ
k


. (22)

The assertion (19) then follows by applying (21) and (22) to (18). To prove (20), by the bounded support ofw(·) and bn → 0,
for y ∈ [a, b], we have y − ubn ∈ [a − 1, b + 1] for sufficiently large n. Thus,

sup
y∈[a,b]


R
w(u)H(y − ubn)du

 ≤ sup
z∈[a−1,b+1]

|H(z)|


R
|w(u)|du. (23)

Taking square first and then taking expectation in (23), we can obtain (20) from (19). ♦

4.4. Proof of Theorem 1

Throughout our proofs, c, c1, c2, . . . are constants that may vary from places to places.

Proof of Theorem 1. Recall Ĝg(y) in (10). Define

f̃Y (y) =
1

nbn

n
i=1

Kbn(y − Yi−1), (24)

ξi(y) = [g(Yi)− Gg(Yi−1)]Kbn(y − Yi−1). (25)
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By the definition of Gg , we have E[ξi(y)] = E{E[ξi(y)|Yi−1]} = 0. Therefore, we can write

Ĝg(y)− Gg(y) =

n
i=1

{ξi(y)− E[ξi(y)]}

nbn f̃Y (y)
+

n
i=1

[Gg(Yi−1)− Gg(y)]Kbn(y − Yi−1)

nbn f̃Y (y)

:= Tn(y)+ Un(y). (26)

In (26), Tn(y) is the stochastic component determining the asymptotic distribution of Ĝg(y), andUn(y) is the bias component.
By Lemma 4, f̃Y (y) = fY (y) + O[b2n + (nbn/ log n)−1/2

] uniformly in y ∈ Y. Furthermore, by Lemma 5, Un(y) = ρg(y)b2n +

Op[b4n + (bn log n/n)1/2] = ρg(y)b2n + op[(nbn log n)−1/2
] uniformly in y ∈ Y. By Slutsky’s theorem, it suffices to establish a

maximal deviation result for
n

i=1{ξi(y)− E[ξi(y)]}.
We use the projection operator Pi in Section 4.2 to write the decomposition

n
i=1

{ξi(y)− E[ξi(y)]} =

n
i=1

{Piξi(y)+ Pi−1ξi(y)+ E[ξi(y)|Fi−2] − E[ξi(y)]}

=

n
i=1

[Piξi(y)+ Piξi+1(y)] +

n
i=1

{E[ξi(y)|Fi−2] − E[ξi(y)]} + [P0ξ1(y)− Pnξn+1(y)]

:= Sn(y)+ Rn(y)+ Mn(y). (27)

The decomposition (27) provides a convenient tool to study asymptotic properties. First, by property (C4) in Section 4.2,
Sn(y) is a martingale with respect to Fn. To study asymptotic properties of Sn(y), Lemma 6 studies its conditional variance.
In Lemma 7, we use the obtained result to study the quadratic characteristic matrix of the multivariate martingale
[Sn(y1), . . . , Sn(yk)]T for distinct y1, . . . , yk. Second, by Lemma 3, supy∈Y |Rn(y)| = Op(bn

√
n). Finally, it is easy to observe

that supy |Mn(y)| = Op(1). To see this, by the boundedness of K(·),

sup
y

|P0ξ1(y)| ≤ sup
u

|K(u)|


E[|g(Y1)− Gg(Y0)||F0] + E[|g(Y1)− Gg(Y0)||F−1]


.

Thus, by property (C1) in Section 4.2,

E

sup
y

|P0ξ1(y)|


≤ 2 sup
u

|K(u)|[E|g(Y1)| + E|Gg(Y0)|] = O(1),

where we have E|Gg(Y0)| = E|E[g(Y1)|Y0]| ≤ E{E[|g(Y1)||Y0]} = E|g(Y1)| = O(1). Similarly, E[supy |Pnξn+1(y)|] =

O(1). This proves supy |Mn(y)| = Op(1). Finally, the desired result then follows from the maximal deviation of Sn(y) in
Lemma 7. ♦

Lemma 3. For Rn(y) in (27), we have supy∈Y |Rn(y)| = Op(bn
√
n).

Proof. Recall ξi(y) in (25). Write ξi(y) = ξi,1(y)− ξi,2(y), where

ξi,1(y) = g(Yi)Kbn(y − Yi−1) and ξi,2(y) = Gg(Yi−1)Kbn(y − Yi−1). (28)

Then it suffices to prove supy∈Y |Jr(y)| = Op(bn
√
n), where

Jr(y) =

n
i=1


E[ξi,r(y)|Fi−2] − E[ξi,r(y)]


, r = 1, 2.

First, we consider J1(y). Since {εi}i∈N are i.i.d. and independent of {Xi}i∈N, by writing Yi−1 = Xi−1 + εi−1, we have

E[ξi,1(y)|Fi−2, Xi] = E[g(Yi)Kbn(y − Xi−1 − εi−1)|Xi−1, Xi]

= E

g(Yi)


R
Kbn(y − Xi−1 − v)qε(v)dv|Xi−1, Xi


= bn

 ω

−ω

K(u)ei(u)du, ei(u) = E[g(Yi)qε(y − Xi−1 − ubn)|Xi−1, Xi].

Here, the last equality follows from the transformation u = (y − Xi−1 − v)/bn. Note that the conditional expectation ei(u)
is a function of Xi−1, Xi. Thus,
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E[ξi,1(y)|Fi−2] = E{E[ξi,1(y)|Fi−2, Xi]|Fi−2}

= bn

 ω

−ω

K(u)E[ei(u)|Xi−1]du

= bn

 ω

−ω

K(u)E[g(Yi)qε(y − Xi−1 − ubn)|Xi−1]du, (29)

where the first equality follows from property (C2) in Section 4.2, the second equality follows from the independence
between ei(u) (which is a function of Xi−1, Xi) and {εi}i∈N as well as the Markovian assumption on {Xi}i∈N, and the
third equality follows from E[ei(u)|Xi−1] = E[g(Yi)qε(y − Xi−1 − ubn)|Xi−1] (property (C2) in Section 4.2). Define
h(z, Xi−1) = E[g(Yi)qε(z−Xi−1)|Xi−1]. (After taking conditional expectation, it is a function of Xi−1.) Then, usingE[ξi,1(y)] =

E{E[ξi,1(y)|Fi−2]} and by (29), we obtain

J1(y) = bn

 ω

−ω

K(u)H(y − ubn)du, where H(z) =

n
i=1

[h(z, Xi−1)− Eh(z, Xi−1)].

Since qε(·) is bounded, by property (C3) in Section 4.2, we can easily see that ∥h(z, X0)∥δ = O(1)∥E[|g(Y1)||X0]∥δ ≤

O(1)∥g(Y1)∥δ for all z ∈ R. Similarly, using ∂h(z, X0)/∂z = E[g(Y1)q′
ε(z − X0)|X0] and the boundedness of q′

ε(·), we have
∥∂h(z, X0)/∂z∥δ ≤ O(1)∥g(Y1)∥δ for all z ∈ R. Thus, by (20) in Lemma 2, we conclude that supy∈Y |J1(y)| = Op(bn

√
n).

Next, we consider J2(y). Using Yi−1 = Xi−1 + εi−1, we obtain

E[ξi,2(y)|Fi−2] =


R

Gg(Xi−1 + v)Kbn(y − Xi−1 − v)qε(v)dv

= bn

 ω

−ω

K(u)Gg(y − ubn)qε(y − Xi−1 − ubn)du. (30)

Thus, using E[ξi,2(y)] = E{E[ξi,2(y)|Fi−2]}, we have

J2(y) = bn

 ω

−ω

K(u)Gg(y − ubn)L(y − ubn)du, (31)

where L(z) =
n−1

i=0 {qε(z − Xi) − E[qε(z − Xi)]}. Since Gg(·) is bounded in the neighborhood Yϵ , the claim then follows
from (20) in Lemma 2. ♦

Lemma 4. For f̃Y (y) in (24), we have supy∈Y |f̃Y (y)− fY (y)| = Op[b2n + (nbn/ log n)−1/2
].

Proof. Let γi(y) = Kbn(y − Yi). Observe the decomposition

f̃Y (y) =
1

nbn
H1(y)+

1
nbn

H2(y)+
E[γ1(y)]

bn
, (32)

where

H1(y) =

n−1
i=0

{γi(y)− E[γi(y)|Fi−1]} =

n−1
i=0

Piγi(y) (33)

H2(y) =

n−1
i=0

{E[γi(y)|Fi−1] − E[γi(y)]}. (34)

By the symmetry of K(·), we can show b−1
n E[γ1(y)] = fY (y) + O(b2n). To prove the desired result, it suffices to show

supy∈Y |H1(y)| = Op(
√
nbn log n) and supy∈Y |H2(y)| = Op(bn

√
n).

First, we consider H2(y). By the same argument in (30)–(31), H2(y) = bn
 ω
−ω

K(u)L(y − ubn)duwith L(·) defined in (31).
Thus, by (20) in Lemma 2, supy∈Y |H2(y)| = Op(bn

√
n).

Next, we consider the martingale part H1(y). We shall adopt a chain argument to approximate H1(y), y ∈ Y, on increas-
ingly denser grid points. Let N = n2 and yj = jT/N, j = −N, 1− N, . . . ,N − 1,N . Then y−N , . . . , yN partition Y = [−T , T ]

into 2N equally spaced intervals with length T/N . By the bounded derivative of K(·), there exists some constant c1 such that,
for all y ∈ [yj, yj+1],

|γi(y)− γi(yj)| + |E[γi(y)|Fi−1] − E[γi(yj)|Fi−1]| ≤ c1|y − yj|/bn ≤ c1T/(Nbn).

Thus, supy∈[yj,yj+1]
|H1(y)− H1(yj)| ≤ nc1T/(Nbn) = O[(nbn)−1

], and consequently,

sup
y∈Y

|H1(y)| ≤ max
j=−N,...,N

|H1(yj)| + O[(nbn)−1
]. (35)
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By property (C8) in Section 4.2,
n−1

i=0 E{[Piγi(yj)]2|Fi−1} ≤
n−1

i=0 E[γ 2
i (yj)|Fi−1] ≤ c2nbn for some constant c2. Let

c3 = supu |K(u)|. Then |Piγi(yj)| ≤ 2c3. Thus, by Freedman’s exponential inequality for boundedmartingale differences [14],
for any c > 0,

pj := P

|H1(yj)| ≥ c


nbn log n


≤ 2 exp


−

c2nbn log n
2(2c3c

√
nbn log n + c2nbn)


= 2 exp(−λn log n), (36)

where

λn =
c2

4c3c


log n
nbn

+ 2c2
.

Since (nb3n)
−1 log n → 0, (nbn)−1 log n < 1 for sufficiently large n. Thus, λn > c2/(4c3c + 2c2) ≥ 3 by choosing a large

enough c (for example, we may take c = 12c3 +
√
6c2). Then

P


max
j=−N,...,N

|H1(yj)| ≥ c

nbn log n


≤

N
j=−N

pj = O(Nn−λn) = O(1/n) → 0.

Therefore, maxj=−N,...,N |H1(yj)| = Op(
√
nbn log n). The result then follows from (35). ♦

Lemma 5. Recall ρg(y) in Theorem 1. Then
n

i=1

[Gg(Yi−1)− Gg(y)]Kbn(y − Yi−1) = nb3nfY (y){ρg(y)+ Op[b2n + (nb3n/ log n)
−1/2

]}.

Proof. We adopt the same argument in Lemma 4. Let ηi(y) = [Gg(Yi) − Gg(y)]Kbn(y − Yi). By the same decomposition in
(32), we have

n−1
i=0

ηi(y) = N1(y)+ N2(y)+ nE[η1(y)],

whereN1(y) =
n−1

i=0 Piηi(y) andN2(y) =
n−1

i=0 {E[ηi(y)|Fi−1]−E[ηi(y)]}. By the symmetry of K(·) and Taylor’s expansion,
we can show E[η1(y)] = b3nfY (y)[ρg(y)+ O(b2n)]. For N2(y), by the same argument in (30)–(31), we can obtain

N2(y) = bn

 ω

−ω

K(u)[Gg(y − ubn)− Gg(y)]L(y − ubn)du, (37)

where L(·) is defined in (31). Note that |Gg(y−ubn)−Gg(y)| = O(bn). Thus, by (20) in Lemma 2, supy∈Y |N2(y)| = Op(b2n
√
n).

For the martingale part N1(y), using Gg(Yi)− Gg(y) = O(bn) for y − Yi = O(bn), we have E[η2i (y)|Fi−1] = O(b2n)E[K 2
bn(y −

Yi)|Fi−1] = O(b3n). Thus, by property (C8) in Section 4.2, the conditional variance satisfies
n−1

i=0 E{[Piηi(y)]2|Fi−1} ≤n−1
i=0 E[η2i (y)|Fi−1] = O(nb3n). By the same chain argument in the proof ofH1(y) in Lemma 4, we can show supy∈Y |N1(y)| =

Op(

nb3n log n). ♦

Lemma 6. Recall ξi(y) in (25). Define

di(y) =
Pi[ξi(y)+ ξi+1(y)]
σg(y)

√
nbnϕK fY (y)

. (38)

Then

sup
y∈Y

 n
i=1

E[d2i (y)|Fi−1] − 1


3/2

= O[(nbn)−1/2
+ b2/3n ]. (39)

Proof. We drop the argument ‘‘y’’ and write ξi = ξi(y). By property (C7), we can show

E{[Pi(ξi + ξi+1)]
2
|Fi−1} = 2E(ξiξi+1|Fi−1)− 2E(ξi|Fi−1)E(ξi+1|Fi−1)− [E(ξi+1|Fi−1)]

2

+ E(ξ 2i |Fi−1)− [E(ξi|Fi−1)]
2
+ E{[E(ξi+1|Fi)]

2
|Fi−1}

:= 2Ai,1 − 2Ai,2 − Ai,3 + Ai,4 − Ai,5 + Ai,6. (40)
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Belowwe consider each of these six terms separately. For convenience, sometimeswe give bounds for ∥·∥2, which dominates
∥ · ∥3/2.

(Ai,5 and Ai,6 terms:) Let νi = [E(ξi+1|Fi)]
2. Note that Ai+1,5 − Ai,6 = Piνi. By consecutively using properties (C5), (C6)

and (C3) in Section 4.2, we have n
i=1

(Ai+1,5 − Ai,6)


2

2

=

n
i=1

∥Piνi∥
2
2 ≤

n
i=1

∥νi∥
2
2 ≤ nE(ξ 41 ) = O(nbn). (41)

Therefore, by the triangle inequality, n
i=1

(Ai,5 − Ai,6)


2

=

ν0 − νn +

n
i=1

(Ai+1,5 − Ai,6)


2

= O(

nbn). (42)

(Ai,3 terms:) Recall ξi,1(y) and ξi,2(y) in (28). By ξi = ξi,1(y) − ξi,2(y), (29) and (30), and the boundedness of K(·), qε(·)
and Gg(y), y ∈ Yϵ , there exists a constant c1 such that

|E(ξi+1|Fi−1)| ≤ c1bn{1 + E[|g(Yi+1)||Xi]}, for all y. (43)

Using {1 + E[|g(Yi+1)||Xi]}
2

≤ 2 + 2{E[|g(Yi+1)||Xi]}
2

≤ 2 + 2E[g2(Yi+1)|Xi], we obtain n
i=1

Ai,3


2

≤ 2c21b
2
n

 n
i=1

{1 + E[g2(Yi+1)|Xi]}


2

≤ 2c21b
2
n

n
i=1

∥1 + E[g2(Yi+1)|Xi]∥2 = O(nb2n). (44)

Here, the last equality follows from ∥E[g2(Yi+1)|Xi]∥2 ≤ ∥g2(Yi+1)∥2 = ∥g(Y1)∥
2
4 < ∞.

(Ai,2 terms:) By the bounded support of K(·), it suffices to consider |Yi−1−y| = O(bn) in ξi so that |Gg(Yi−1)| ≤ c2 for some
constant c2. Note that E[|g(Yi)||Fi−1] = E[|g(Yi)||Xi]. Thus, |E(ξi|Fi−1)| ≤ |Kbn(y − Yi−1)|{c2 + E[|g(Yi)||Xi]}. Combining
this with (43) gives

|Ai,2| ≤ c1bn|Kbn(y − Yi−1)|Zi, Zi = {c2 + E[|g(Yi)||Xi]}{1 + E[|g(Yi+1)||Xi]}. (45)

By the same argument in (30), E[|Kbn(y − Yi−1)|
3/2

|Xi−1, Xi] ≤ c3bn for some constant c3. Also, Zi is a function of Xi and
independent of εi−1. Thus, E[|Kbn(y − Yi−1)Zi|3/2] = E{E[|Kbn(y − Yi−1)Zi|3/2|Xi−1, Xi]} ≤ c3bnE(|Zi|3/2). Now, by (45), we
have  n

i=1

Ai,2


3/2

≤

n
i=1

∥Ai,2∥3/2 ≤ c1bn
n

i=1

∥Kbn(y − Yi−1)Zi∥3/2 = O(nb5/3n ). (46)

Here, we have used ∥Zi∥3/2 ≤ ∥Z1∥2 < ∞ by the condition g(Yi) ∈ Lδ with δ ≥ 4.
(Ai,1 terms:) In ξiξi+1, thanks to the terms Kbn(y − Yi−1) and Kbn(y − Yi), it suffices to consider |Yi−1 − y| = O(bn) and

|Yi − y| = O(bn). Thus, |g(Yi)| + |Gg(Yi)| + |Gg(Yi−1)| ≤ c4 for some constant c4, and consequently |ξi| ≤ c4|Kbn(y − Yi−1)|.
Also, conditioning on Fi−1, the εi term in Yi = Xi + εi is independent of everything else, and thus the same argument in (30)
shows that the term Kbn(y − Yi)will result in an O(bn) factor. Thus,

|Ai,1| ≤ O(bn)|Kbn(y − Yi−1)|{c4 + E[|g(Yi+1)||Fi−1]}.

By the independence between {εi} and {Xi} aswell as theMarkovian assumption on {Xi},E[|g(Yi+1)||Fi−1] = E[|g(Yi+1)||Xi].
The same argument in (46) then gives n

i=1

Ai,1


3/2

≤ O(bn)
n

i=1

∥Kbn(y − Yi−1){c4 + E[|g(Yi+1)||Xi]}∥3/2 = O(nb5/3n ). (47)

(Ai,4 terms:) Write Ai,4 − E(ξ 2i ) = Pi−1ξ
2
i + [E(ξ 2i |Fi−2) − E(ξ 2i )]. Since {Pi−1ξ

2
i }i∈Z are martingale differences with

respect to {Fi−1}i∈Z, by the same argument in (41), n
i=1

Pi−1ξ
2
i


2

= O(

nbn). (48)
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By the same argument in (29) and (30), it can be shown that

E(ξ 2i |Fi−2) = bn

 ω

−ω

K 2(u)E{[g(Yi)− Gg(y − ubn)]2qε(y − Xi−1 − ubn)|Xi−1}.

Thus, as in the proof of Lemma 3, an application of Lemma 2 gives ∥
n

i=1[E(ξ
2
i |Fi−2) − E(ξ 2i )]∥2 = O(bn

√
n). The latter

bound along with (48) gives n
i=1

[Ai,4 − E(ξ 2i )]


2

≤

 n
i=1

Pi−1ξ
2
i


2

+

 n
i=1

[E(ξ 2i |Fi−2)− E(ξ 2i )]


2

= O(

nbn). (49)

Elementary calculation shows that E(ξ 2i ) = bnϕK fY (y)σ 2
g (y)+O(b2n). Finally, (39) then follows from (40), (42), (44), (46),

(47) and (49) via the triangle inequality. ♦

Lemma 7. Recall Sn(y) in (27). Under the conditions and notations in Theorem 1,

lim
n→∞

P


sup
y∈Yn

|Sn(y)|
σg(y)

√
nbnϕK fY (y)

≤ Bmn(z)


= e−2e−z

, z ∈ R. (50)

Proof. Let di(y) be defined in (38). Write

S̃n(y) :=
Sn(y)

σg(y)
√
nbnϕK fY (y)

=

n
i=1

di(y).

Write Yn = {y1 < · · · < ymn}. For fixed k ∈ N distinct integers 1 ≤ j1, j2, . . . , jk ≤ mn, define the k-dimensional column
vectors

Di = [di(yj1), . . . , di(yjk)]
T and Sn,k =

n
i=1

Di = [S̃n(yj1), . . . , S̃n(yjk)]
T .

Then {Di}i∈Z are k-dimensional vectors of martingale differences with respect to {Fi}i∈Z. Denote by Qn the quadratic
characteristic matrix of the martingale Sn,k, i.e.,

Qn =

n
i=1

E(DiDT
i |Fi−1) := (qrs)1≤r,s≤k.

Let τrs = ϕKσg(yjr )σg(yjs)

fY (yjr )fY (yjs). Then we can write qrs as

qrs =

n
i=1

E[di(yjr )di(yjs)|Fi−1]

=
1

nbnτrs

n
i=1


E[Piξi(yjr )Piξi(yjs)|Fi−1] + E[Piξi+1(yjr )Piξi+1(yjs)|Fi−1]

+ E[Piξi(yjr )Piξi+1(yjs)|Fi−1] + E[Piξi+1(yjr )Piξi(yjs)|Fi−1]


. (51)

For r = s, by Lemma 6, ∥qrr −1∥3/2 = O[(nbn)−1/2
+b2/3n ]. For r ≠ s, by the definition ofYn, since |yjr −yjs | ≥ τn, bn = o(τn),

and the kernel function K(·) has bounded support, we have Kbn(yjr − Yi−1)Kbn(yjs − Yi−1) = 0 for large enough n. Thus,
Piξi(yjr )Piξi(yjs) = 0. For the other three terms on the right hand side of (51), their expansions of the form (40) involve terms
of the form Ai,1, Ai,2, Ai,3, Ai,5, Ai,6 (the term Ai,4 vanishes, thanks to the choice of Yn and the bounded support of K(·)). Thus,
we canuse the sameargument in Lemma6 to show that their∥·∥3/2 normcanbeboundedbyO[(nbn)−1/2

+b2/3n ]. In summary,
let Irs be the (r, s)-element of the k×k identity matrix, then ∥qrs − Irs∥3/2 = O[(nbn)−1/2

+b2/3n ] uniformly over 1 ≤ r, s ≤ k.
It is easily seen that

n
i=1 E|di(yjr )|

3
= O[(nbn)−1/2

] uniformly over 1 ≤ r ≤ k. Thus
n

i=1 E|di(yjr )|
3
+ E(|qrs − Irs|3/2) =

O(Ωn) uniformly, whereΩn = (nbn)−1/2
+ bn.

For j = 1, . . . ,mn, define events Tj = {|S̃n(yj)| ≥ Bmn(z)}. Then P{supy∈Yn |S̃n(y)| ≥ Bmn(z)} = P{∪
mn
j=1 Tj}. By the same

argument in the proof of Theorem 3 in [31], we can show P{∪
mn
j=1 Tj} → 1 − exp{−2e−z

}. The details are omitted. ♦
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4.5. Proof of Proposition 2

Lemma 8. The uniform consistency holds: supy∈Y |Ĝg(y)− Gg(y)| = Op[b2n + (bn
√
n)−1 log n].

Proof. By (26), (27), Lemmas 3–4, it suffices to prove supy∈Y |Sn(y)| = Op(
√
n log n), where Sn(y) =

n
i=1 Pi[ξi(y)+ξi+1(y)]

is defined in (27). Again, we adopt the chain argument in Lemma 4 to establish the uniform bound for the martingale Sn(y).
Let y−N , . . . , yN be the grid points defined in the proof of Lemma 4. By the same chain argument in Lemma 4, it suffices to

provemax−N≤j≤N |Sn(yj)| = Op(
√
n log n). However, since the summandsPi[ξi(y)+ξi+1(y)] and their conditional variances

are no longer bounded, we cannot directly use Freedman’s exponential inequality for bounded martingale differences. To
solve this issue, we adopt the following argument. Define

A1 = max
1≤i≤n

[E(ζi|Fi)+ E(ζi|Fi−1)], ζi = |g(Yi)| + |Gg(Yi−1)| + |g(Yi+1)| + |Gg(Yi)|,

A2 =

n
i=1

E[|g(Yi)|
2
+ |Gg(Yi−1)|

2
+ |g(Yi+1)|

2
+ |Gg(Yi)|

2
|Fi−1].

Let c1 = supu |K(u)|. Then |ξi(y)| + |ξi+1(y)| ≤ c1ζi uniformly in y, and consequently

|Pi[ξi(y)+ ξi+1(y)]| ≤ c1A1, uniformly in i = 1, . . . , n, y ∈ R. (52)

Now, consider conditional variance. By (C8) in Section 4.2, E({Pi[ξi(y) + ξi+1(y)]}2|Fi−1) ≤ E{[ξi(y) + ξi+1(y)]2|Fi−1} ≤

c21E(ζ 2
i |Fi−1). Thus, by the Cauchy–Schwarz inequality,

n
i=1

E({Pi[ξi(y)+ ξi+1(y)]}2|Fi−1) ≤ c21
n

i=1

E(ζ 2
i |Fi−1) ≤ 4c21A2, uniformly in y ∈ R. (53)

By (52) and (53), on the event {A1 ≤ n1/4 log n, A2 ≤ n log n}, the martingale differences Pi[ξi(y) + ξi+1(y)] are upper
bounded by c1n1/4 log n and the sum of conditional variances is upper bounded by 4c21n log n. Therefore, as in (36), for any
j = −N, . . . ,N and c > 0,

pj := P

|Sn(yj)| ≥ c

√
n log n, A1 ≤ n1/4 log n, A2 ≤ n log n


≤ 2 exp


−

c2n(log n)2

2[(c1n1/4 log n)(c
√
n log n)+ 4c21n log n]


= 2 exp(−λn log n), (54)

where

λn =
c2

2[cc1n−1/4(log n)2 + 4c21 ]
.

For large enough c and n, we have λn > 3. Thus,

P


max
−N≤j≤N

|Sn(yj)| ≥ c
√
n log n


≤ P


max

−N≤j≤N
|Sn(yj)| ≥ c

√
n log n, A1 ≤ n1/4 log n, A2 ≤ n log n


+ P{A1 > n1/4 log n} + P{A2 > n log n}

≤

N
j=−N

pj + P{A1 > n1/4 log n} + P{A2 > n log n}. (55)

By (54) and N = n2,
N

j=−N pj = O(1/n) → 0. Note that

E(A4
1) ≤

n
i=1

E{[E(ζi|Fi)+ E(ζi|Fi−1)]
4
}

≤ 16
n

i=1

E{[E(ζi|Fi)]
4
+ [E(ζi|Fi−1)]

4
} ≤ 32nE(ζ 4

1 ).

Here the second ‘‘≤’’ follows from (u + v)4 ≤ 16(u4
+ v4) and the third ‘‘≤’’ follows from property (C3) in Section 4.2.

Thus, by Markov’s inequality, P{A1 > n1/4 log n} ≤ E(A4
1)/[n

1/4(log n)]4 = O[(log n)−4
]. Another application of Markov’s

inequality gives P{A2 > n log n} ≤ E(A2)/(n log n) = O[(log n)−1
]. Thus, the right hand side of (55) goes to zero, and we

conclude max−N≤j≤N |Sn(yj)| = Op(
√
n log n), completing the proof. ♦
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Proof of Proposition 2. (i) By the same argument in Lemma 4, supy∈Y |f̂Y (y) − fY (y)| = Op[l2n + (nln/ log n)−1/2
] =

op[(log n)−1/2
].

(ii) Recall the definition ofYϵ in Condition 2.Write∆1 = supy∈Yϵ/2
|Ĝg(y)−Gg(y)|. Clearly, the uniformbound in Lemma8

also holds on Yϵ/2, i.e.,∆1 = Op[b2n + (bn
√
n)−1 log n]. Define

σ̄ 2
g (y) =

n
i=1

[g(Yi)− Gg(Yi−1)]
2Khn(y − Yi−1)

n
i=1

Khn(y − Yi−1)

.

By the bounded support of K(·), it suffices to consider Yi−1 in a neighborhood of y ∈ Y or consider Yi−1 in the neighborhood
Yϵ/2 of Y so that max1≤i≤n |Ĝg(Yi−1)− Gg(Yi−1)| ≤ ∆1. Applying the inequality |a2 − b2| ≤ x(x + 2|b|) for all |a − b| ≤ x,
we have

|σ̂ 2
g (y)− σ̄ 2

g (y)| ≤ ∆1

n
i=1

[∆1 + 2|g(Yi)− Gg(Yi−1)|]|Khn(y − Yi−1)| n
i=1

Khn(y − Yi−1)

 . (56)

Let ∆2 = max1≤i≤n |g(Yi) − Gg(Yi−1)|. Then E(∆4
2) ≤

n
i=1 E[|g(Yi) − Gg(Yi−1)|

4
] = O(n), which implies ∆2 = Op(n1/4).

Thus, by (56) and Lemma 4, σ̂ 2
g (y) − σ̄ 2

g (y) = Op(∆
2
1 + ∆1∆2) = op[(log n)−1/2

], uniformly in y ∈ Y. Finally, by the
same argument in Lemma 8 (i.e., use a similar decomposition as in (27) along with Lemma 3, Lemma 4 and the argument
in Lemma 8), we can show that supy∈Y |σ̄ 2

g (y) − σ 2
g (y)| = Op[h2

n + (hn
√
n)−1 log n] = op[(log n)−1/2

]. This completes the
proof. ♦

References

[1] Y. Aït-Sahalia, Testing continuous-time models of the spot interest rate, Rev. Financ. Stud. 9 (1996) 385–426.
[2] Y. Aït-Sahalia, J. Fan, H. Peng, Nonparametric transition-based tests for jump-diffusions, J. Amer. Statist. Assoc. 104 (2009) 1102–1116.
[3] Y. Aït-Sahalia, P.A. Mykland, L. Zhang, How often to sample a continuous-time process in the presence of market microstructure noise, Rev. Financ.

Stud. 18 (2005) 351–416.
[4] A. Azzalini, A. Bowman, On the use of nonparametric regression for checking linear relationships, J. R. Stat. Soc. Ser. B 55 (1993) 549–557.
[5] P.J. Bickel, M. Rosenblatt, On some global measures of the deviations of density function estimates, Ann. Statist. 1 (1973) 1071–1095.
[6] R.J. Carroll, D. Ruppert, L.A. Stefanski, C.M. Crainiceanu, Measurement Error in Nonlinear Models: A Modern Perspective, CRC Press, 2006.
[7] X. Chen, H. Hong, D. Nekipelov, Nonlinear models of measurement errors, J. Econom. Lit. 49 (2011) 901–937.
[8] R.L. Eubank, P.L. Speckman, Confidence bands in nonparametric regression, J. Amer. Statist. Assoc. 88 (1993) 1287–1301.
[9] J. Fan, On the optimal rates of convergence for nonparametric deconvolution problems, Ann. Statist. 19 (1991) 1257–1272.

[10] Y. Fan, Q. Li, Consistent model specification tests: omitted variables and semiparametric functional forms, Econometrica 64 (1996) 865–890.
[11] J. Fan, Q. Yao, Nonlinear Time Series: Nonparametric and Parametric Methods, Springer, New York, 2003.
[12] J. Fan, W. Zhang, Simultaneous confidence bands and hypothesis testing in varying-coefficient models, Scand. J. Statist. 27 (2000) 715–731.
[13] J. Fan, C. Zhang, J. Zhang, Generalized likelihood ratio statistics and Wilks phenomenon, Ann. Statist. 29 (2001) 153–193.
[14] D.A. Freedman, On tail probabilities for martingales, Ann. Probab. 3 (1975) 100–118.
[15] W. Fuller, Measurement Error Models, John Wiley & Sons, New York, 1987.
[16] J. Gao, M. King, Adaptive testing in continuous-time diffusion models, Econometric Theory 20 (2004) 844–882.
[17] W. Härdle, E. Mammen, Comparing nonparametric versus parametric regression fits, Ann. Statist. 21 (1993) 1926–1947.
[18] Y. Hong, Hypothesis testing in time series via the empirical characteristic function: a generalized spectral density approach, J. Amer. Statist. Assoc. 94

(1999) 1201–1220.
[19] Y. Hong, H. Li, Nonparametric specification testing for continuous-timemodels with applications to term structure of interest rates, Rev. Financ. Stud.

18 (2005) 37–84.
[20] Y. Hong, H. White, Consistent specification testing via nonparametric series regression, Econometrica 63 (1995) 1133–1159.
[21] J. Jacod, Y. Li, P.A. Mykland, M. Podolskij, M. Vetter, Microstructure noise in the continuous case: the pre-averaging approach, Stochastic Process. Appl.

119 (2009) 2249–2276.
[22] G. Knafl, J. Sacks, D. Ylvisaker, Confidence bands for regression functions, J. Amer. Statist. Assoc. 80 (1985) 683–691.
[23] Q. Li, J. Racine, Nonparametric Econometrics, Princeton University Press, Princeton, New Jersey, 2007.
[24] Y. Li, Z. Zhang, X. Zheng, Volatility inference in the presence of both endogenous time and microstructure noise, Stochastic Process. Appl. 123 (2013)

2696–2727.
[25] J. Pinkse, A consistent nonparametric test for serial independence, J. Econometrics 84 (1998) 205–231.
[26] B.W. Silverman, Density Estimation, Chapman and Hall, London, 1986.
[27] S. Taylor, Modeling Financial Time Series, Wiley, Chichester, 1986.
[28] W.B. Wu, Nonlinear system theory: another look at dependence, Proc. Natl. Acad. Sci. USA 102 (2005) 14150–14154.
[29] L. Zhang, P.A. Mykland, Y. Aït-Sahalia, A tale of two time scales: determining integrated volatility with noisy high-frequency data, J. Amer. Statist.

Assoc. 472 (2005) 1394–1411.
[30] Z. Zhao, Parametric and nonparametric models and methods in financial econometrics, Stat. Surv. 2 (2008) 1–42.
[31] Z. Zhao, Nonparametricmodel validations for hiddenMarkovmodelswith applications in financial econometrics, J. Econometrics 162 (2011) 225–239.
[32] Z. Zhao, W.B. Wu, Confidence bands in nonparametric time series regression, Ann. Statist. 36 (2008) 1854–1878.

http://refhub.elsevier.com/S0047-259X(14)00117-1/sbref1
http://refhub.elsevier.com/S0047-259X(14)00117-1/sbref2
http://refhub.elsevier.com/S0047-259X(14)00117-1/sbref3
http://refhub.elsevier.com/S0047-259X(14)00117-1/sbref4
http://refhub.elsevier.com/S0047-259X(14)00117-1/sbref5
http://refhub.elsevier.com/S0047-259X(14)00117-1/sbref6
http://refhub.elsevier.com/S0047-259X(14)00117-1/sbref7
http://refhub.elsevier.com/S0047-259X(14)00117-1/sbref8
http://refhub.elsevier.com/S0047-259X(14)00117-1/sbref9
http://refhub.elsevier.com/S0047-259X(14)00117-1/sbref10
http://refhub.elsevier.com/S0047-259X(14)00117-1/sbref11
http://refhub.elsevier.com/S0047-259X(14)00117-1/sbref12
http://refhub.elsevier.com/S0047-259X(14)00117-1/sbref13
http://refhub.elsevier.com/S0047-259X(14)00117-1/sbref14
http://refhub.elsevier.com/S0047-259X(14)00117-1/sbref15
http://refhub.elsevier.com/S0047-259X(14)00117-1/sbref16
http://refhub.elsevier.com/S0047-259X(14)00117-1/sbref17
http://refhub.elsevier.com/S0047-259X(14)00117-1/sbref18
http://refhub.elsevier.com/S0047-259X(14)00117-1/sbref19
http://refhub.elsevier.com/S0047-259X(14)00117-1/sbref20
http://refhub.elsevier.com/S0047-259X(14)00117-1/sbref21
http://refhub.elsevier.com/S0047-259X(14)00117-1/sbref22
http://refhub.elsevier.com/S0047-259X(14)00117-1/sbref23
http://refhub.elsevier.com/S0047-259X(14)00117-1/sbref24
http://refhub.elsevier.com/S0047-259X(14)00117-1/sbref25
http://refhub.elsevier.com/S0047-259X(14)00117-1/sbref26
http://refhub.elsevier.com/S0047-259X(14)00117-1/sbref27
http://refhub.elsevier.com/S0047-259X(14)00117-1/sbref28
http://refhub.elsevier.com/S0047-259X(14)00117-1/sbref29
http://refhub.elsevier.com/S0047-259X(14)00117-1/sbref30
http://refhub.elsevier.com/S0047-259X(14)00117-1/sbref31
http://refhub.elsevier.com/S0047-259X(14)00117-1/sbref32

	Specification test for Markov models with measurement errors
	Introduction
	Methodology
	Nonparametric simultaneous confidence band
	Parametric estimate under  H0 :  Q = Qθ 
	Choices of the transformation  g ( · )  and Bonferroni correction
	Alternative approaches: conditional distribution or conditional characteristic function

	Monte Carlo simulation study
	Proofs
	Proof of Proposition 1
	Some preliminary facts of projection operator
	Some preliminary results on mixing processes
	Proof of Theorem 1
	Proof of Proposition 2

	References


