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a b s t r a c t

This paper is concernedwith the inference of nonparametricmean function in a time series
context. The commonly used kernel smoothing estimate is asymptotically normal and the
traditional inference procedure then consistently estimates the asymptotic variance func-
tion and relies upon normal approximation. Consistent estimation of the asymptotic vari-
ance function involves another level of nonparametric smoothing. In practice, the choice
of the extra bandwidth parameter can be difficult, the inference results can be sensitive to
bandwidth selection and the normal approximation can be quite unsatisfactory in small
samples leading to poor coverage. To alleviate the problem, we propose to extend the re-
cently developed self-normalized approach,which is a bandwidth free inference procedure
developed for parametric inference, to construct point-wise confidence interval for non-
parametric mean function. To justify asymptotic validity of the self-normalized approach,
we establish a functional central limit theorem for recursive nonparametric mean regres-
sion function estimates under primitive conditions and show that the limiting process is a
Gaussian process with non-stationary and dependent increments. The superior finite sam-
ple performance of the new approach is demonstrated through simulation studies.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

Nonparametric methods are useful complements to the traditional well developed parametric counterparts. They allow
the users to entertainmodel flexibility while reducingmodeling bias, and partly due to this reason, nonparametric inference
has been extensively studied. This paper concerns a new way of addressing nonparametric inference in the time series
setting. There is a huge literature about the use of nonparametric methods in time series analysis, and asymptotic theory
for nonparametric estimators and tests has been quite well developed for weakly dependent time series data. We refer the
reader to Chapters 5–10 in [3] for a nice introduction of some basic ideas and results.

Given stationary time series {(Xi, Yi)}
n
i=1, we focus on inference for the conditional mean function µ(x) = E(Yi|Xi = x);

see Section 4 for some possible extensions to other nonparametric functions. Let µ̂n(x) be a nonparametric estimate of µ(x)
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based on the full sample. Under suitable regularity and weak dependence conditions, we have
nbn

µ̂n(x) − µ(x) − b2nr(x)
s(x)

d
−→ N(0, 1), (1)

where bn is an appropriate bandwidth, b2nr(x) is the bias term, s2(x) is the asymptotic variance function, and
d

−→ stands
for convergence in distribution. To construct a point-wise confidence interval for µ(x), the traditional approach involves
consistent estimation of s2(x) through an extra nonparametric smoothing procedurewhich inevitably introduces estimation
error. The latter issue becomes even more serious when s(x) ≈ 0 so that the left hand side of (1) is very sensitive to the
estimation error of s(x). In particular, even if the absolute estimation error is small, the relative estimation error can be
large, which leads to poor coverage in the constructed confidence interval. Thus, one needs to deal with the unpleasant
phenomenon that, the smaller s(x) (i.e. lower noise level), the more difficult to carry out statistical inference. Furthermore,
nonparametric estimation of s(x) involves extra bandwidth parameter(s). Two users using two different bandwidths in
estimating s(x) for the same data set may get quite different results.

To alleviate the above-mentioned problem in the traditional inference procedure, we propose to extend the recently
developed self-normalized (SN, hereafter) approach [14] to nonparametric setting. The SN approach was developed for a
finite dimensional parameter of a stationary time series and it has the nice feature of being bandwidth free. The basic idea of
the SN approach, when applied to nonparametric setting, is to use estimates of µ(x) on the basis of recursive subsamples to
forma self-normalizer that is an inconsistent estimator of s(x). Although it is inconsistent, the self-normalizer is proportional
to s(x), and the limiting distribution of the self-normalized quantity is pivotal. The literature on the SN approach and
related methods [10,12,8,7,14,15,17,21] has been growing recently, but most of the work is limited to parametric inference,
where the parameter of interest is finite dimensional and the method of estimation does not involve smoothing. Kim and
Zhao [9] studied SN approach for the nonparametric mean function in longitudinal models, but the data are essentially
independent due to the independent subjects. To the best of our knowledge, the SN-based extension to nonparametric time
series inference seems new.

An important theoretical contribution of this article is that we establish nonparametric functional central limit theorem
(FCLT, hereafter) of some recursive estimates of µ(·) under primitive conditions. To be specific, denote by µ̂m(x) the
nonparametric estimate of µ(x) using data {(Xi, Yi)}

m
i=1 up to time m and bandwidth bm. Throughout, denote by ⌊v⌋ the

integer part of v. We show that, due to the sample-size-dependent bandwidths, the process {µ̂⌊nt⌋(x) − µ(x)} indexed by
t , after proper normalization, converges weakly to a Gaussian process {Gt} with non-stationary and dependent increments.
Such a result is very different from the FCLT required for the SN approach in the parametric inference problems, where the
limiting process is a Brownian motion with stationary and independent increments.

Throughout, we write ξ ∈ Lp (p ≥ 1) if ∥ξ∥p := (E|ξ |
p)1/p < ∞. The symbols Op(1) and op(1) signify being bounded in

probability and convergence to zero in probability, respectively. For sequences {an} and {cn}, write an ≍ cn if an/cn → 1. The
article is organized as follows. Section 2 presents themain results, including the FCLT for nonparametric recursive estimates
and the self-normalization based confidence interval. Simulation results are presented in Section 3. Section 4 concludes and
technical details are gathered in the Appendix.

2. Main results

We consider the nonparametric mean regression model:

Yi = µ(Xi) + ei, (2)

where µ(·) is the nonparametric mean function of interest and {ei} are noises. As an important special case, let Xi = Yi−1
and ei = σ(Xi)εi for innovations {εi} and a scale function σ(·), then we have the nonparametric autoregressive (AR) model
Yi = µ(Yi−1) + σ(Yi−1)εi, which includes many nonlinear time series models, such as linear AR, threshold AR, exponential
AR, and AR with conditional heteroscedasticity; see [3]. We assume that {(Xi, Yi)}

n
i=1 are stationary time series observations

so that they have a natural ordering in time, i.e., (Xi, Yi) is the observation at time i.

2.1. Nonparametric FCLT for recursive estimates

Throughout let x be a fixed interior point in the support of Xi. Denote by µ̂m(x) the nonparametric estimate ofµ(x) based
on data {(Xi, Yi)}

m
i=1 up to time m. In this paper we consider the local linear kernel smoothing estimator [2] of µ(x):

µ̂m(x) = â0, (â0, â1) = argmin
(a0,a1)

m
i=1


Yi − a0 − a1(Xi − x)

2
K
Xi − x

bm


, (3)

where K(·) is a kernel function and bm > 0 is the bandwidth. By elementary calculation,

µ̂m(x) =
Mm(2)Nm(0) − Mm(1)Nm(1)

Mm(2)Mm(0) − Mm(1)2
, (4)
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where, for j = 0, 1, 2,

Mm(j) =

m
i=1

(Xi − x)jK
Xi − x

bm


, Nm(j) =

m
i=1

(Xi − x)jYiK
Xi − x

bm


. (5)

Let c ∈ (0, 1) be a fixed small constant. With m = ⌊cn⌋, ⌊cn⌋ + 1, . . . , n, we can obtain the recursive estimates µ̂⌊cn⌋(x),
µ̂⌊cn⌋+1(x), . . . , µ̂n(x) of the same quantity µ(x). In this section we establish a nonparametric FCLT for the process
{µ̂⌊nt⌋(x)}c≤t≤1. If bm = ∞ and we drop the linear term a1(Xi − x) from (3) (i.e., we consider the local constant estimation),
then µ̂m(x) = m−1m

i=1 Yi reduces to the partial sum process of {Yi}
m
i=1, which has been the focus of classical FCLT.

The extension of parametric FCLT to nonparametric setting is far from trivial and the main complication lies in the
following two aspects:

(i) The bandwidth bm depends on the sample size m and it has an impact on the asymptotic behavior of µ̂m(x). It is well
known that the optimal bandwidth of µ̂n(x) is bn = C(K , r, s)n−1/5 for some constant C(K , r, s) that depends only on the
kernel K(·), the bias function r(·), and the asymptotic variance function s2(·). Therefore, the optimal bandwidth bm for
sample size m satisfies bm = bn(n/m)1/5, where bn is the bandwidth chosen on the basis of full sample {(Xi, Yi)}

n
i=1. For

example, we can use the plug-inmethod or the cross-validationmethod [11] to choose bn and then set bm = bn(n/m)1/5.
(ii) For parametric FCLT, the limiting process is typically a scaled Brownian motion in the weakly dependent setting. By

contrast, due to the sample-size-dependent bandwidths, the limit for the partial sum process in (4) is unknown and a
careful investigation is needed.

Next, we introduce some technical assumptions.

Assumption 1 (Dependence Condition). In (2), E(ei|Xi, Xi−1, . . . , X1, ei−1, ei−2, . . . , e1) = 0. Moreover, {(Xi, ei)}i∈N is sta-
tionary and α-mixing with mixing coefficient αk ≤ Cρk, k ∈ N, for some constants C < ∞ and ρ ∈ (0, 1).

Assumption 1 implies E(ei|Xi) = E[E(ei|Xi, . . . , X1, ei−1, . . . , e1)|Xi] = 0, which ensures the identifiability of µ(x)
through the conditional mean regression E(Yi|Xi = x) = µ(x). The α-mixing framework is widely used in time series
analysis; see [3].

Definition 1. Let pX (·) be the density function of Xi. Throughout we assume that pX (·) is bounded. Recall that x is a given
point. For q > 0, define

ℓq(v) = pX (x + v)E(|ei|q|Xi = x + v), v ∈ R. (6)

Define the set of functions

C(q) =


f (·) :


R

|f (u)|qdu < ∞, lim
ϵ→0


R

|ℓq(uϵ) − ℓq(0)| |f (u)|qdu = 0


. (7)

Intuitively, (7) asserts that ℓq(v) is continuous at v = 0 under the norm induced by |f (·)|q. If f (·) has a bounded support
and ℓq(·) is continuous at v = 0, then f ∈ C(q).

Assumption 2 (Regularity Condition). (i) For some δ > 0, ei ∈ L4+δ . (ii) p′′

X (·) is continuous at x and pX (x) > 0. (iii) µ′′′(·) is
bounded and continuous at x. (iv) K(·) is symmetric, has bounded derivative, and (recall C(q) in Definition 1)

sup
u∈R

(1 + |u| + |u|2)|K(u)| < ∞,


R
K(u)du = 1,


R

|u3K(u)|du < ∞,

g(u) ∈ C(2) ∩ C(4 + δ) with g(u) = |K(u)| + sup
t≥c1/5

|uK ′(tu)|.
(8)

To establish the asymptotic normality of µ̂⌊nt⌋(x) at a fixed t , it suffices to assume ei ∈ L2+δ for some δ > 0, see
Theorem 2.22 in [3]; for FCLT, we need the stronger moment assumption ei ∈ L4+δ to establish the tightness of the process
{µ̂⌊nt⌋(x)}c≤t≤1. For nonparametric kernel smoothing estimation, it is typically assumed that the kernel has bounded support
and bounded derivative. For this type of kernel function, if ℓ2(·) and ℓ4+δ(·) are continuous at v = 0, then (8) trivially holds.
On the other hand, Assumption 2(iv) allows the kernel function to have an unbounded support with sufficiently thin tails,
such as the standard Gaussian kernel.

Theorem 1. In (3), let bm = bn(n/m)1/5 and bn ∝ n−1/5. Suppose Assumptions 1–2 hold. Then the following weak convergence
holds in the Skorokhod space [1]√

nbnpX (x)
σ (x)

t4/5

µ̂⌊nt⌋(x) − µ(x) − b2

⌊nt⌋r(x)


c≤t≤1
⇒ {Gt}c≤t≤1, (9)
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where r(x) = µ′′(x)


R u2K(u)du/2, σ 2(x) = E(e2i |Xi = x), c ∈ (0, 1) is any given constant, and {Gt}c≤t≤1 is a centered
Gaussian process with autocovariance function given by

Σ(t, t ′) = cov(Gt ,Gt ′) = min(t, t ′)


R
K(t1/5u)K(t ′1/5u)du. (10)

The asymptotic normality in (1) is a direct application of Theorem 1 with t = 1. For parametric inference, FCLT often
admits Brownian motion, which has stationary and independent increments, as its limit. By contrast, in the nonparametric
context, the properly standardized nonparametric recursive estimates converge to a Gaussian process {Gt} with non-
stationary and dependent increments, owing to the sample-size-dependent bandwidth. The covariance function of the
Gaussian process depends on the kernel function as shown in (10). If we use the standard normal density as the kernel
function, i.e., K(u) = (2π)−1/2 exp(−u2/2), then Σ(t, t ′) = min(t, t ′)/


2π(t2/5 + t ′2/5).

2.2. Self-normalization based confidence interval

In this section, we focus on point-wise confidence interval construction forµ(x) using the SN approach. First, we provide
a brief discussion of the traditional approach. By Theorem 1 with t = 1, (1) holds with

s2(x) =
σ 2(x)
pX (x)


R
K 2(u)du, where σ 2(x) = E(e2i |Xi = x). (11)

In the traditional approach, one would construct a consistent estimate of s2(x) by using consistent estimates for pX (x) and
σ 2(x). For pX (x), we can use a nonparametric kernel density estimate with bandwidth τn:

p̂X (x) =
1
nτn

n
i=1

K
Xi − x

τn


. (12)

Let êi = Yi−µ̂n(Xi) be the residuals, then one can estimate σ 2(x) by applying the local constant kernel smoothing procedure
to (X1, ê21), . . . , (Xn, ê2n) with another bandwidth hn:

σ̂ 2
n (x) =


n

i=1

K
Xi − x

hn

−1 n
i=1

ê2i K
Xi − x

hn


. (13)

Finally, s2(x) can be estimated by plugging estimates σ̂ 2
n (x) and p̂X (x) into (11). Therefore, traditional approach requires the

selection of two additional bandwidths hn and τn.
A distinctive feature of the SN approach [14] is that it does not involve any bandwidth parameter. When applied to

the nonparametric inference problem at hand, the key idea of the SN approach is to construct an inconsistent estimator
of s2(x) using recursive estimates of µ(x) and form a self-normalized quantity. Such an inconsistent self-normalizer is
proportional to s2(x), which can then be canceled out in the limiting distribution of the self-normalized quantity. The SN
approach was developed in the context of parametric inference and its generalization to nonparametric inference requires
nontrivial modifications. First, we need to deal with the bias in nonparametric estimation. Instead of estimating the bias
explicitly, we propose to use a higher order kernel to make the bias asymptotically negligible. In particular, we can impose
the following assumption:

Assumption 3. In (9), assume without loss of generality that r(x) = 0.

Assumption 3 assumes r(x) = 0; otherwise, we can use a higher order kernel to achieve bias reduction. Note that the
constant in r(x) is proportional to


R u2K(u)du. Let

K ∗(u) = 2K(u) − K(u/
√
2)/

√
2.

Then we can easily verify


R u2K ∗(u)du = 0 so the second order bias vanishes, i.e., r(x) = 0. The idea can be traced back
to jackknifing kernel regression estimator of Hardle [4] and is also used in [20] in the inference of trend with time series
errors. In practice, using this higher order kernel is asymptotically equivalent to µ̃m(x) = 2µ̂m(x|bm)− µ̂m(x|

√
2bm), where

µ̂m(x|bm) and µ̂m(x|
√
2bm) are the estimates ofµ(x) using bandwidth bm and

√
2bm, respectively. If we use the latter kernel

K ∗(u) with K(u) being the standard Gaussian kernel, then the autocovariance function in (10) becomes

Σ(t, t ′) =
min(t, t ′)

√
2π


4 + 1/

√
2

√
t2/5 + t ′2/5

−
2

√
t2/5 + 2t ′2/5

−
2

√
2t2/5 + t ′2/5


. (14)

By stationarity and (1), for each t ∈ (0, 1), both µ̂⌊nt⌋(x) and µ̂n(x) have asymptotic variances proportional to s2(x).
Motivated by this feature, we consider certain ratio of µ̂n(x) and an aggregated version of the process {µ̂⌊nt⌋(x), t ∈ [c, 1]}
to cancel out s2(x).
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Table 1
Simulated quantiles of |ξ | (cf. (15)) at c = 0.1 based on 106 replications and approximation of the Gaussian process {Gt } on 103 evenly spaced grid points.

τ quantile 50% 60% 70% 80% 90% 95% 97.5% 99% 99.5% 99.9%

qτ 1.74 2.22 2.81 3.63 4.99 6.37 7.70 9.50 10.83 13.88

Theorem 2. Suppose that the same assumptions in Theorem 1 hold. Further assume Assumption 3 holds. Then we have

µ̂n(x) − µ(x)
Vn

d
−→

G1 1
c |Gt − t4/5G1|

2dt
= ξ, where Vn = n−13/10


n

m=⌊cn⌋

m8/5
|µ̂m(x) − µ̂n(x)|2

1/2

. (15)

Here {Gt} is the Gaussian process in Theorem 1. Consequently, an asymptotic 100(1−α)% confidence interval for µ(x) is µ̂n(x)±
q1−αVn, where qτ is the τ quantile of |ξ |.

For a given c and kernel function, the distribution of ξ is pivotal and the quantiles of |ξ | can be obtained through
Monte Carlo simulations; see Table 1 for simulated quantiles. In the context of confidence interval construction for finite-
dimensional parameters, Shao [14] used a similar self-normalization method with no trimming (i.e. c = 0). The use of
trimming is also adopted in [21], who proposed an extension of the self-normalized approach to linear regression models
with fixed regressors and dependent errors. In our problem, trimming seems necessary as nonparametric estimate of µ(x)
on the basis of a small sample is very unstable, and in the extreme case of only one point (X1, Y1), we are unable to carry
out the estimation. Throughout the simulation and data illustration, we set c = 0.1, which seems to work pretty well. In
general large c is not recommended as we lose some efficiency, whereas some recursive estimates may not be stable when
c is too small. A similar finding is reported in [21], where c = 0.1 is also shown to be a good choice via simulations.

We summarize the procedure to obtain the SN-based confidence interval for µ(x):

1. Find the optimal bandwidth bn using the existing bandwidth selection procedure, such as cross-validation or plug-in
method; set bm = bn(n/m)1/5.

2. Calculate the recursive estimates of µ(x), i.e., µ̂m(x) for m = ⌊cn⌋, . . . , n; see (3).
3. For a given nominal level 1 − α, the SN-based interval is constructed as µ̂n(x) ± q1−αVn; see (15).

Thus the SN approach only involves the choice of a smoothing parameter in the estimation stage, which seems necessary
as a good estimator is usually needed for inference. By contrast, the traditional approach requires a consistent nonparametric
estimate of s(x), which involves selecting two extra smoothing parameters and always introduces estimation error in a finite
sample. Thus, our proposed method provides an easy-to-implement and fully nonparametric inference technique.

The proposed self-normalization based approach is effectively performing inference using an inconsistent estimator for
the asymptotic variance, the idea of which has attracted considerable attention recently. Kiefer, Vogelsang and co-authors
proposed the fixed-b approach in the context of heteroscedasticity-autocorrelation consistent robust testing; see [8,6,7,19],
among others. By holding the smoothing parameter or truncation lag as a fixed proportion of sample size, the resulting
asymptotic variance matrix estimator is no longer consistent, but is proportional to the asymptotic variance matrix, and
consequently the resulting studentized statistic has a pivotal non-normal limiting distribution. Similar ideas can be found
in the self-normalization scheme of Lobato [12] and Shao [14]. For confidence interval construction of finite-dimensional
parameters, Shao’s self-normalized approach relies on the functional convergence of standardized recursive estimates
based partial sum process to standard Brownian motion. In contrast, due to the sample-size-dependent bandwidth of
nonparametric recursive estimates, our self-normalization is based on a different Gaussian process with non-stationary
dependent increments. To the best of our knowledge, the functional convergence result and the extension of the self-
normalization idea to nonparametric time series context seems new.

Remark 1. In Theorems 1–2, the limiting distribution is the same for any arbitrarily given (but fixed) x, and we can use this
result to construct the pointwise confidence interval for µ(·). On the other hand, if we wish to construct the uniform or
simultaneous confidence interval on an interval x ∈ [a, b], then we must obtain some uniform convergence in x ∈ [a, b],
which is more technically challenging. In this paper we focus on the pointwise confidence interval case, and the uniform
confidence interval case will serve as a direction for future research.

3. Numerical results

We compare the finite sample performance of the proposed self-normalization based method in Theorem 2 to that of
the traditional method based on asymptotic normality and consistent estimation of the asymptotic variance function. We
adopt the bias reduction procedure in Assumption 3 so the effective kernel becomes K(u) = 2φ(u) − φ(u/

√
2)/

√
2, where

φ(·) is the standard normal density, and the covariance function of the Gaussian process {Gt} in Theorem 2 is given by (14).
Denote by ℓτ the τ -percentile of X ’s. Let xj = ℓ0.1 + (j − 1)(ℓ0.9 − ℓ0.1)/20, j = 1, . . . , 21, be uniform grid points on

[ℓ0.1, ℓ0.9]. For each xj, we construct a 95% confidence interval forµ(xj), and denote by pj the empirical coverage probability,
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which is computed as the proportion of realizations among 1000 replicationswhose confidence interval coversµ(xj). Define
the average deviation of pj from the nominal level 95% as

Average deviation of coverage probabilities =
1
21

21
j=1

|pj − 95%|, (16)

with a smaller value indicating better overall performance.
First, consider the stochastic regression model with time series errors:

Model I : Yi = µ(Xi) + λ


1 + 2X2

i εi, εi = θεi−1 +


1 − θ2gi, (17)

where Xi are independently distributed with uniform distribution on [0, 1] and gi are independent standard normal random
variables. The model allows conditional heteroscedasticity and dependence in εi, with the parameter θ ∈ (0, 1) controlling
the strength of dependence. We consider θ = 0.0, 0.4, 0.8, representing models ranging from independence to strong
dependence. Let µ(x) = 0.6x be the mean regression function of interest. To investigate the effect of noise level, we let
λ = 0.03, 0.06, 0.12, 0.24, ranging from low noise level to high noise level.

Next, consider the autoregressive conditional heteroscedastic model

Model II : Yi = µ(Yi−1; θ) + λ


1 + 2Y 2

i−1εi, (18)

where εi are independent standard normal errors, (Xi, Yi) = (Yi−1, Yi), and µ(x; θ) = θx is the function of interest. As in
Model I, we consider different combinations of θ = 0.0, 0.4, 0.8 and λ = 0.03, 0.06, 0.12, 0.24.

To select the bandwidth bn, we use Ruppert et al. [13]’s plug-in method, implemented using the R command dpill in
the package KernSmooth. To implement the traditional method, we select hn in (13) using the latter plug-in method, and
consider the following five popular choices for the nonparametric kernel density bandwidth τn in (12):

(i) The normal reference rule-of-thumb method with factor 0.9, i.e., τn = 0.9 ∗ n−1/5
∗ min{sd(X), IQR(X)}, where sd(X)

and IQR(X) are, respectively, the standard deviation and interquartile of X1, . . . , Xn. This method is implemented using
the R command bw.nrd0 in the stats package.

(ii) Thenormal reference rule-of-thumbmethodwith factor 1.06, implementedusing theR commandbw.nrd in thestats
package.

(iii) The unbiased cross-validation bandwidth method, implemented using the R command bw.ucv in the stats package.
(iv) The biased cross-validation bandwidth method, implemented using the R command bw.bcv in the stats package.
(v) Sheather and Jones [18]’s method by minimizing estimates of the mean integrated squared error, implemented using

the R command bw.SJ in the stats package.

In all settings, we use sample size n = 300.
The results are presented in Table 2. For the asymptotic normality methods with the five different bandwidth selection

methods, there is a substantial deviation between the actual coverage probability and the nominal level. For Model I, the
deviation becomes clearly more severe as the dependence increases. The latter can be explained by the fact that stronger
positive dependence corresponds to a smaller effective sample size, which results in larger estimation error and worse
coverage.What appears intriguing is that forModel I, as the noise levelλ decreases from0.24 to 0.03, the traditionalmethods
perform even worse. This phenomenon is presumably due to the fact that the relative estimation error of estimating s(x)
in (1) is more severe when s(x) becomes smaller, especially when s(x) is close to 0. For Model II, the performance of the
traditional methods is relatively consistent across dependence and noise level, with average deviations around 6%–7%. By
contrast, the proposed self-normalization based method delivers much more accurate coverage probabilities and is fairly
robust with respect to the magnitude of dependence and noise level.

4. Discussions and conclusions

This article proposes an extension of the self-normalized approach [14] to nonparametric inference in a time series
context. The new approach overcomes the drawbacks of the traditional approach, where consistent estimation of the
asymptotic variance function is needed with an extra smoothing procedure. The finite sample performance convincingly
demonstrates that the proposed methodology delivers substantially more accurate coverage than the traditional approach.
The new inferencemethod does not require any additional bandwidth parameters other than bn, which seems necessary for
the estimation of the nonparametric mean function.

The work presented here seems to be the first attempt to generalize the self-normalization based methods to nonpara-
metric inference problems in the time series setting. We limit our framework to nonparametric mean regression with one
covariate variable and our theory is developed for time series data. There are certainly room for further extensions of our
methodology to nonparametric and semiparametric problemswithmultiple covariates and to dependent data of other types,
such as longitudinal data or spatial data. The key difficulty would be to establish FCLT for certain recursive estimates based
on some natural ordering of the data. For example, for data on a squared lattice, we can construct them-th recursive estimate
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Table 2
Empirical average deviation of coverage probabilities (cf. (16)) for the mean regression function for Models I and II in (17)–(18). Column SN stands for the
self-normalization based method. For the asymptotic normality based method, we consider five different bandwidth methods for τn in (12) as described
in Section 3.

λ θ SN Traditional method
bw.nrd0 bw.nrd bw.ucv bw.bcv bw.SJ

Model I

0.03 θ = 0.0 0.005 0.092 0.089 0.073 0.089 0.062
θ = 0.4 0.009 0.134 0.131 0.114 0.131 0.088
θ = 0.8 0.005 0.317 0.314 0.297 0.314 0.259

0.06 θ = 0.0 0.006 0.076 0.074 0.061 0.075 0.053
θ = 0.4 0.005 0.114 0.112 0.096 0.112 0.070
θ = 0.8 0.005 0.284 0.282 0.263 0.282 0.228

0.12 θ = 0.0 0.006 0.061 0.059 0.048 0.059 0.046
θ = 0.4 0.006 0.100 0.098 0.082 0.097 0.056
θ = 0.8 0.006 0.254 0.251 0.233 0.250 0.198

0.24 θ = 0.0 0.004 0.057 0.055 0.041 0.055 0.040
θ = 0.4 0.006 0.092 0.090 0.076 0.090 0.051
θ = 0.8 0.006 0.224 0.221 0.203 0.222 0.166

Model II

0.03 θ = 0.0 0.006 0.073 0.073 0.054 0.072 0.048
θ = 0.4 0.007 0.070 0.069 0.051 0.069 0.048
θ = 0.8 0.007 0.073 0.072 0.062 0.072 0.051

0.06 θ = 0.0 0.007 0.066 0.065 0.063 0.065 0.053
θ = 0.4 0.006 0.061 0.060 0.062 0.061 0.054
θ = 0.8 0.006 0.080 0.078 0.075 0.078 0.065

0.12 θ = 0.0 0.005 0.068 0.067 0.074 0.067 0.068
θ = 0.4 0.006 0.069 0.068 0.069 0.067 0.065
θ = 0.8 0.006 0.082 0.081 0.080 0.081 0.080

0.24 θ = 0.0 0.007 0.065 0.064 0.064 0.064 0.071
θ = 0.4 0.006 0.069 0.069 0.070 0.069 0.075
θ = 0.8 0.008 0.082 0.082 0.082 0.081 0.087

from data on expanding squares−m ≤ i, j ≤ m, but the corresponding FCLT is more challenging. It is also worth noting that
nonparametric estimation and inference have been well studied for i.i.d. data, and an application of the SN approach devel-
oped in this article to i.i.d. setting encounters a practical problem because there is no natural ordering with i.i.d. data. With
different ordering, the SN approach may deliver different results. In view of this practical drawback, it would be interesting
to develop a new SN-based approach that does not depend on the ordering of the data.

Another direction for possible extension is to consider self-normalization based inferences for a general nonparametric
function, denoted byµ(·), such as conditionalmean function, conditional quantile function, nonparametric density function,
and conditional distribution function. Consider recursive estimates µ̂m(·) ofµ(·) using data up to timem. Assume that there
exist some functions r(·) and H(·, ·) such that the following asymptotic Bahadur type representation holds

µ̂m(x) − µ(x) = b2mr(x) +
1

mbmpX (x)

m
i=1

H(Xi, Yi)K
Xi − x

bm


+ Rm(x), (19)

uniformly over ⌊cn⌋ ≤ m ≤ n, where Rm(x) is the negligible remainder term. Under conditions similar to Assumptions 1
and 2, we can establish similar FCLT as in Theorem 1, which can be used to construct self-normalized confidence interval
for µ(x) as in Theorem 2. However, it can be challenging to obtain the uniform representation (19). As an example, consider
nonparametric quantile regression and denote by µ(x|τ), τ ∈ (0, 1), the conditional τ -quantile of Yi given Xi = x. We can
estimate µ(x|τ) by the local linear quantile regression

(µ̂(x|τ), θ̂ ) = argmin
µ,θ

n
i=1

ρτ (Yi − µ − θ(Xi − x))K
Xi − x

bn


,

where ρτ (t) = |t|+ (2τ − 1)t is the check function or quantile loss function at quantile τ . By Honda [5], (19) holds for each
fixed m, but it requires significantly more work to establish uniform representations and show the uniform negligibility of
the remainder terms Rm(x). We leave these possible extensions for future work.
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Appendix. Technical proofs

Throughout this section C, c1, c2, . . . are generic constants that may vary from line to line.

A.1. Some results on mixing process

In this sectionwe present some results onmixing process whichmay be of independent interest for other nonparametric
inference problems involving dependent data.

Lemma 1 (Proposition 2.5 in [3]). Let U andV be two randomvariables such that U ∈ Lp1 andV ∈ Lp2 for some p1 > 1, p2 > 1,
and 1/p1 + 1/p2 < 1. Then

|cov(U, V )| ≤ 8α(U, V )1−1/p1−1/p2∥U∥p1∥V∥p2 .

Here α(U, V ) is the α-mixing coefficient between the two σ -algebras generated by U and V .

In Lemmas 2–4, let {Zi}i∈Z be a stationary α-mixing process with mixing coefficient αk ≤ Cρk for some constants C < ∞

andρ ∈ (0, 1). Lemma2presents an exponential inequality for the tail probability of
n

i=1 Zi, Lemma3 establishes a uniform
convergence result with optimal rate (up to a logarithm factor) for partial sum process of functions of {Zi}, and Lemma 4
presents a moment inequality for E(Z0ZiZ2

r ).

Lemma 2. Assume E(Z0) = 0 and P{|Z0| ≤ b} = 1 for some b. For ℓ ≤ ⌊n/2⌋ and z > 0,

P

 n
i=1

Zi

 > z


≤ 4 exp


−

z2ℓ
144n2E(Z2

0 ) + 4bzn


+ 22ℓα⌊n/(2ℓ)⌋


1 +

4bn
z

.

Proof. Let s = n/(2ℓ). By Theorem 2.18 in [3],

P

 n
i=1

Zi

 > z


≤ 4 exp


−

z2ℓ
16n2Γs/s2 + 4bzn


+ 22ℓα⌊s⌋


1 +

4bn
z

,

where Γs = max0≤j≤2ℓ−1 E{(⌊js⌋ + 1− js)Z1 + Z2 + · · · + Zr + (js+ s− ⌊js+ s⌋)Zr+1}
2 and r = ⌊(j+ 1)s⌋ − ⌊js⌋. The result

then follows from the Cauchy–Schwarz inequality Γs ≤ (r + 1)E(Z2
1 + · · · + Z2

r+1) ≤ ⌊s + 2⌋2E(Z2
0 ) ≤ 9s2E(Z2

0 ).

Lemma 3. Let {θm}m∈N be a sequence of deterministic parameters and h(·, ·) a bivariate function such that E[h(Z0, θm)] = 0
and P{|h(Z0, θm)| ≤ b} = 1 for a constant b. Define

Hm =

m
i=1

h(Zi, θm), m ∈ N.

Let c ∈ (0, 1) be any fixed constant. Suppose there exist σm and a constant c1 such that

E[h2(Z0, θm)] ≤ σ 2
m and

√
mσm > c1, m = ⌊cn⌋, . . . , n,

with sufficiently large n. Then as n → ∞,

max
⌊cn⌋≤m≤n

|Hm| = Op(χn), where χn =
√
n log3 n max

⌊cn⌋≤m≤n
σm.

Proof. Let c2 > 0 be a constant to be determined later. Applying Lemma2with z = c2
√
mσm log3 m and ℓ = m/(2⌊log2 m⌋),

we obtain

P(|Hm| ≥ c2
√
mσm log3 m) ≤ 4 exp


−

z2ℓ
144m2σ 2

m + 4bzm


+ 22ℓα

⌊log2 m⌋


1 +

4bm
z

.

Notice that, for ⌊cn⌋ ≤ m ≤ nwith large enough n,

z2ℓ
144m2σ 2

m + 4bzm
=

c22 log3 m/⌊log2 m⌋

288/ log3 m + 8bc2/(
√
mσm)

≥
c22 logm

1 + 8bc2/c1
.
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As m → ∞, α
⌊log2 m⌋

= O(ρ log2 m) = o(m−4). Therefore, for largem,

P(|Hm| ≥ c2
√
mσm log3 m) ≤ 4 exp


−

c22 logm
1 + 8bc2/c1


+ O(m2)α

⌊log2 m⌋

= O{m−c22/(1+8bc2/c1) + m−2
}. (20)

Choose c2 such that c22/[1 + 8bc2/c1] ≥ 2. By (20),

P


max
⌊cn⌋≤m≤n

|Hm| ≥ c2χn


≤

n
m=⌊cn⌋

P(|Hm| ≥ c2χn)

≤

n
m=⌊cn⌋

P(|Hm| ≥ c2
√
mσm log3 m) → 0,

completing the proof.

Lemma 4. Assume Z0 ∈ L4+δ , E(Z0) = 0, and E(Z0Zi) = 0, i ≥ 1. Then for r ≥ 1,

max
i=1,2,...,r

|E(Z0ZiZ2
r )| ≤ 8Cδ/(4+δ)ρrδ/[2(4+δ)]

∥Z0∥4
4+δ.

Proof. Write p = (4 + δ)/3. From E(Z0) = 0, E(Z0ZiZ2
r ) = cov(Z0, ZiZ2

r ). By Lemma 1,

|E(Z0ZiZ2
r )| = |cov(Z0, ZiZ2

r )| ≤ 8αδ/(4+δ)

i ∥Z0∥3p · ∥ZiZ2
r ∥p

≤ 8αδ/(4+δ)

i ∥Z0∥4
4+δ. (21)

Here the second ‘‘≤’’ follows from Hölder’s inequality

∥ZiZ2
r ∥

p
p = E(|Zi|p|Zr |p|Zr |p) ≤ ∥ |Zi|p∥3 · ∥ |Zr |p∥3 · ∥ |Zr |p∥3 = ∥Z0∥

3p
3p.

Furthermore, by E(Z0Zi) = 0 and Lemma 1,

|E(Z0ZiZ2
r )| = |cov(Z0Zi, Z2

r )| ≤ 8αδ/(4+δ)

r−i ∥Z0Zi∥3p/2 · ∥Z2
r ∥3p/2. (22)

Notice that ∥Z2
r ∥3p/2 = ∥Zr∥2

3p. Also, by the Cauchy–Schwarz inequality,

∥Z0Zi∥
3p/2
3p/2 = E(|Z0|3p/2|Zi|3p/2) ≤ ∥ |Z0|3p/2∥2 · ∥ |Zi|3p/2∥2 = ∥Z0∥

3p
3p.

Therefore, by (22), we have

|E(Z0ZiZ2
r )| = |cov(Z0Zi, Z2

r )| ≤ 8αδ/(4+δ)

r−i ∥Z0∥4
4+δ. (23)

Combining (21) and (23), we obtain |E(Z0ZiZ2
r )| ≤ 8min{αi, αr−i}

δ/(4+δ)
∥Z0∥4

4+δ . The desired result then follows from
min{αi, αr−i} ≤

√
αiαr−i ≤ Cρr/2.

A.2. Proof of Theorems 1–2

Lemma 5. Recall ℓq(·) and C(q) in Definition 1. Then for any f (·) ∈ C(q) and bn → 0,
(i) ∥eif {(Xi − x)/bn}∥

q
q = bnℓq(0)


R |f (u)|qdu + o(bn);

(ii) for all p ≤ q, ∥eif {(Xi − x)/bn}∥
p
p = O(bp/qn ).

Proof. (i) Conditioning on Xi and then using the double-expectation formula, we obtaineif

Xi − x
bn


q

q

=


R

E[|ei|q|Xi = v]

f


v − x
bn


q

pX (v)dv

= bn


R

ℓq(ubn)|f (u)|qdu

= bn


ℓq(0)


R

|f (u)|qdu + o(1)


, (24)

where the second ‘‘ = ’’ follows from the change-of-variable u = (v − x)/bn and the third ‘‘ = ’’ follows from (7). (ii) It
follows from (i) and Jensen’s inequality ∥eif {(Xi − x)/bn}∥p ≤ ∥eif {(Xi − x)/bn}∥q = O(b1/qn ).
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Lemma 6. Suppose the conditions in Theorem 1 hold. Write σ 2(x) = E(e2i |Xi = x),

Wn(t) =
1

σ(x)
√
nbnpX (x)

⌊nt⌋
i=1

ζi(t), where ζi(t) = eiK


Xi − x
b⌊nt⌋


.

Then {Wn(t)}c≤t≤1 ⇒ {Gt}c≤t≤1 with {Gt}c≤t≤1 being the Gaussian process in Theorem 1.
Proof. Consider the approximation ofWn(t):

Un(t) =
1

σ(x)
√
nbnpX (x)

⌊nt⌋
i=1

ηi(t), where ηi(t) = eiK


Xi − x
bnt−1/5


.

Let g(·) be defined in (8). Note that for all c1/5 ≤ s ≤ s′, by (8), we have

|K(su) − K(s′u)| = |(s − s′)uK ′(s∗u)|

≤ |s − s′| sup
t≥c1/5

|uK ′(tu)| ≤ |s − s′|g(u), (25)

where s∗ ∈ [s, s′]. Also, by Taylor’s expansion (z0 + z)a = za0 + O(z) for z → 0 and any fixed z0 and a, we have

bn
b⌊nt⌋

− t1/5 =


⌊nt⌋
n

1/5
− t1/5 =


t + O

1
n

1/5
− t1/5 = O

1
n


, (26)

uniformly in t ∈ [c, 1]. Thus, by (25) and (26), we have

max
t∈[c,1]

|ζi(t) − ηi(t)| = |ei| max
t∈[c,1]

K


bn
b⌊nt⌋

Xi − x
bn


− K


t1/5

Xi − x
bn


= O

1
n


|ei|g


Xi − x
bn


. (27)

Since g(·) ∈ C(4 + δ), by Lemma 5(ii) and (27),

max
t∈[c,1]

|Wn(t) − Un(t)| =
O(1)

n
√
nbn

n
i=1

|ei|g


Xi − x
bn


=

Op{b
1/(4+δ)
n }

√
nbn

p
→ 0. (28)

Thus, it suffices to show the convergence of {Un(t)}c≤t≤1.
We need to establish the finite-dimensional convergence and the tightness of {Un(t)}c≤t≤1; see [1]. For finite-dimensional

convergence, by the Cramér–Wold device, it suffices to consider linear combinations of Un(t). Let t, t ′ ∈ [c, 1]. Recall ℓq(z)
in (6). By the same double-expectation argument in (24) and using ℓ2(0) = pX (x)σ 2(x), we haveE[ηi(t)ηi(t ′)]

bn
− pX (x)σ 2(x)


R
K(t1/5u)K(t ′1/5u)du

 =




R
[ℓ2(ubn) − ℓ2(0)]K(t1/5u)K(t ′1/5u)du


≤


R

|ℓ2(ubn) − ℓ2(0)|
K(t1/5u)2 + K(t ′1/5u)2

2
du

→ 0, (29)

where the last convergence holds since K(·) ∈ C(2).
For k ∈ N, let c ≤ t1, . . . , tk ≤ 1 and w1, . . . , wk ∈ R. Consider the linear combination

Un =

k
s=1

wsUn(ts) =
1

σ(x)
√
nbnpX (x)

n
i=1

ηi, where ηi =

k
s=1

wsηi(ts)1i≤⌊nts⌋.

Let Fi be the sigma-algebra generated by (Xi+1, Xi, . . . , X1, ei, ei−1, . . . , e1). By Assumption 1, E[ηi(t)|Fi−1] = 0 for each
fixed t , and thus {ηi}i∈N are martingale differences with respect to {Fi}i∈N. We shall apply the martingale central limit
theorem (CLT) to establish a CLT for Un. Write a ∧ b = min{a, b}. From 1i≤⌊nts⌋1i≤⌊nts′ ⌋ = 1i≤⌊n(ts∧ts′ )⌋ and (29),

E(η2
i )

bn
=

k
s=1

k
s′=1

wsws′1i≤⌊n(ts∧ts′ )⌋
E[ηi(ts)ηi(ts′)]

bn

= pX (x)σ 2(x)
k

s=1

k
s′=1

1i≤⌊n(ts∧ts′ )⌋wsws′


R
K(t1/5s u)K(t1/5s′ u)du + o(1). (30)
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Therefore, by the orthogonality of martingale differences and (30),

var(Un) =

n
i=1

var(ηi)

nbnpX (x)σ 2(x)
→

k
s=1

k
s′=1

(ts ∧ ts′)wsws′


R
K(t1/5s u)K(t1/5s′ u)du,

which is the variance of
k

s=1 wsGts . Next, we verify the Lindeberg condition. Since k is fixed, it suffices to verify that (nbn)−1n
i=1 E[η2

i (t)1|ηi(t)|≥c1
√
nbn ] → 0 for any given t > c and c1 > 0. SinceK(·) ∈ C(4+δ), by Lemma5(i),E[|ηi(t)|4+δ

] = O(bn).
Therefore,

1
nbn

n
i=1

E[η2
i (t)1|ηi(t)|≥c1

√
nbn ] ≤

1
nbn

n
i=1

E[|ηi(t)|4+δ
]

(c1
√
nbn)2+δ

= O

(

nbn)−(2+δ)


→ 0.

This proves the Lindeberg condition. By martingale CLT, Un has the desired CLT.
It remains to prove the tightness of Un(t). Let c ≤ t < t ′ ≤ 1. By the inequality (a + b)4 ≤ 16(a4 + b4), we obtain

E[{Un(t) − Un(t ′)}4] =
1

(nbn)2p2X (x)σ 4(x)
E


⌊nt⌋
i=1

ηi(t) −

⌊nt ′⌋
i=1

ηi(t ′)

4

=
O(I1 + I2)

(nbn)2
, (31)

where

I1 = E


⌊nt⌋
i=1

[ηi(t) − ηi(t ′)]

4

and I2 = E


⌊nt⌋
i=1

ηi(t ′) −

⌊nt ′⌋
i=1

ηi(t ′)

4

.

Write Zi = ηi(t) − ηi(t ′). By E(ηi(t)|Fi−1) = 0, E(Zi|Fi−1) = 0. For i < j < r < s, E(Zi) = 0, E(ZiZj) = E[E(ZiZj|Fj−1)] = 0,
E(Z3

i Zj) = E[E(Z3
i Zj|Fj−1)] = 0, E(ZiZ2

j Zr) = E[E(ZiZ2
j Zr |Fr−1)] = 0, E(ZiZjZrZs) = E[E(ZiZjZrZs|Fs−1)] = 0. Therefore,

I1 ≤ O(1)


i

E(Z4
i ) +


i<j

E(Z2
i Z

2
j ) +


i<j<r

E(ZiZjZ2
r )

+

i<j

E(ZiZ3
j )




≤ O(1)


nE(Z4

1 ) + n
n

r=1

E(Z2
1 Z

2
1+r) +


1≤i<r≤n

(r − i) max
j=i+1,...,r

|E(ZiZjZ2
r )|


. (32)

Recall ℓq(·) in (6). By the same argument in the derivation of (24), for q ∈ (0, 4 + δ],

E(|Zi|q) = bn


R

ℓq(ubn)
K(t1/5u) − K(t ′1/5u)

qdu
= O(bn)|t ′ − t|q


R

ℓq(ubn)|g(u)|qdu, (33)

where the last ‘‘ = ’’ follows from (25) and the inequality |t ′1/5 − t1/5| ≤ c−4/5
|t ′ − t|/5 for c ≤ t < t ′ ≤ 1. By (33)

and the definition of C(q), if g(·) ∈ C(q) so that


R ℓq(ubn)|g(u)|qdu = ℓq(0)


R |g(u)|qdu + o(1) = O(1), we have
E(|Zi|q) = O(bn|t ′ − t|q). Therefore, under the condition g(·) ∈ C(2) ∩ C(4 + δ), we obtain

∥Zi∥2 = O[b1/2n |t ′ − t|] and ∥Zi∥4+δ = O[b1/(4+δ)
n |t ′ − t|]. (34)

An application of Lemma 1 with p1 = p2 = (4 + δ)/2 gives

|cov(Z2
1 , Z2

1+r)| ≤ 8αδ/(4+δ)
r ∥Z2

1∥
2
(4+δ)/2 = 8αδ/(4+δ)

r ∥Zi∥4
4+δ

= O[ρrδ/(4+δ)b4/(4+δ)
n |t ′ − t|4].

Combining the above two expressions, we obtain

E(Z2
1 Z

2
1+r) = cov(Z2

1 , Z2
1+r) + [E(Z2

1 )]2 = |t ′ − t|4O[ρrδ/(4+δ)b4/(4+δ)
n + b2n]. (35)

Applying Lemma 4 and (34), we have

E(ZiZjZ2
r ) = O{ρ(r−i)δ/[2(4+δ)]b4/(4+δ)

n |t ′ − t|4}, j = i + 1, . . . , r. (36)
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Furthermore, by (34) and Jensen’s inequality, E(Z4
i ) ≤ ∥Zi∥4

4+δ = O[b4/(4+δ)
n |t ′ − t|4]. Therefore, by (32) and (34)–(36), it is

easy to see

I1 = O

|t ′ − t|4[nb4/(4+δ)

n + n2b2n]

. (37)

For I2, by the same argument in I1, we can show

I2 = E


⌊nt ′⌋

i=⌊nt⌋+1

ηi(t ′)

4

= O[nb4/(4+δ)
n |t ′ − t| + n2b2n|t

′
− t|2]. (38)

Therefore, by (31) and (37)–(38),

E[{Un(t) − Un(t ′)}4] = O

|t ′ − t| + |t ′ − t|4

nb(4+2δ)/(4+δ)
n

+ |t ′ − t|2 + |t ′ − t|4

,

completing the tightness of Un(t) in view of [nb(4+2δ)/(4+δ)
n ]

−1
= O(n−3/5) under the condition bn ∝ n−1/5; see condition A1

and Remark 2.1 of Shao and Yu [16].

Lemma 7. Suppose pX (·) and g(·) are bounded and continuous at x. Then for any integrable function f (·), we have

max
⌊cn⌋≤m≤n

Eg(Xi)f
Xi − x

bm


− bmpX (x)g(x)


R
f (u)du

 = o(bn).

Proof. Note that g(x)pX (x) is continuous at x because g(x) and pX (x) are continuous at x and pX (x) is bounded. Observe that

E

g(Xi)f

Xi − x
bm


=


R
f
v − x

bm


g(v)pX (v)dv

= bm


R
f (u)g(x + ubm)pX (x + ubm)du.

Note that bm ∝ bn for ⌊cn⌋ ≤ m ≤ n. The result then follows from

max
⌊cn⌋≤m≤n




R
f (u)[g(x + ubm)pX (x + ubm) − g(x)pX (x)]du


≤


R

|f (u)| max
⌊cn⌋≤m≤n

|g(x + ubm)pX (x + ubm) − g(x)pX (x)|du → 0.

Here the last convergence follows from the dominated convergence theorem in view of the continuity of g(·)pX (·) at x, the
boundedness of g(·)pX (·), and the integrability of f (·).

Lemma 8. Suppose the conditions in Theorem 1 hold. For Mm(j) defined in (5), we have

max
⌊cn⌋≤m≤n

Mm(j)

mbjm
− bmpX (x)


R
ujK(u)du

 = o(bn), j = 0, 1, 2.

Proof. We abbreviate ‘‘uniformly in ⌊cn⌋ ≤ m ≤ n’’ as ‘‘uniformly inm’’. Define

hj(Xi, bm) =

Xi − x
bm

j
K
Xi − x

bm


.

Let c1 = supu(1 + |u| + |u|2)|K(u)|. By (8), c1 < ∞ and thus hj(Xi, bm) is bounded for j = 0, 1, 2. By the integrability
of |u3K(u)| (see (8)), |ujK(u)| is integrable for j = 0, 1, 2, which implies that |u2jK 2(u)| ≤ c1|ujK(u)| is also integrable for
j = 0, 1, 2. By Lemma 7, E[hj(Xi, bm)2] = O(bn) uniformly inm. Therefore, applying Lemma 3, we obtain

m
i=1{hj(Xi, bm) −

E[hj(Xi, bm)]} = Op{
√
nbn(log n)3} uniformly inm. Furthermore, by Lemma 7, E[hj(Xi, bm)] = bmpX (x)


R ujK(u)du + o(bn)

uniformly inm. Thus,

Mm(j)

mbjm
= E[hj(X1, bm)] +

1
m

m
i=1

{hj(Xi, bm) − E[hj(Xi, bm)]}

= bmpX (x)


R
ujK(u)du + o(bn) + Op{


bn/n(log n)3},

uniformly inm. Since bn ∝ n−1/5,
√
bn/n(log n)3 = o(bn). This completes the proof.
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Proof of Theorem 1. By (4), we can easily obtain the following decomposition

µ̂m(x) − µ(x) =
Mm(2)[Nm(0) − µ(x)Mm(0)] − Mm(1)[Nm(1) − µ(x)Mm(1)]

Mm(2)Mm(0) − Mm(1)2
. (39)

Define

Bm(j) =

m
i=1

[µ(Xi) − µ(x)](Xi − x)jK
x − Xi

bm


, j = 0, 1.

By (39), we can derive the decomposition

µ̂m(x) − µ(x) =
Mm(2)Bm(0) − Mm(1)Bm(1)
Mm(2)Mm(0) − Mm(1)2

+
Mm(2)

Mm(2)Mm(0) − Mm(1)2

m
i=1

eiK
x − Xi

bm


−

bmMm(1)
Mm(2)Mm(0) − Mm(1)2

m
i=1

ei
Xi − x

bm


K
Xi − x

bm


. (40)

Belowwe consider the three terms on the right hand side of (40) separately.We shall show that the first term is the bias term,
the second term is the stochastic component that determines the asymptotic distribution, and the third term is negligible.

The symmetry of K(·) implies


R uK(u)du = 0. By Lemma 8, we can easily obtain

Mm(2)Mm(0) − Mm(1)2 = m2b4mp
2
X (x)


R
u2K(u)du + o(n2b4n), (41)

uniformly in ⌊cn⌋ ≤ m ≤ n (hereafter, abbreviated as ‘‘uniformly in m’’). Note that, by the same argument in Lemma 8, we
can show

m
i=1 |[(Xi − x)/bm]

3K{(Xi − x)/bm}| = O(nbn) uniformly in m. Thus, since µ(·) has bounded third derivative, by
Taylor’s expansion µ(Xi) − µ(x) = (Xi − x)µ′(x) + (Xi − x)2µ′′(x)/2 + O[(Xi − x)3], we can obtain

Bm(0) = Mm(1)µ′(x) + Mm(2)µ′′(x)/2 + O(nb3n).

Similarly, Bm(1) = Mm(2)µ′(x)+O(nb4n) uniformly inm. Combining the latter two approximations with (41) and Lemma 8,
after some algebra we see that the first term in (40) has the approximation

Mm(2)2µ′′(x)/2 + o(n2b6n)
Mm(2)Mm(0) − Mm(1)2

= b2m
µ′′(x)

2


R
u2K(u)du + o(b2n),

uniformly inm. This gives the asymptotic bias. From (41), Lemma 8, and the FCLT in Lemma 6, after proper normalization the
second term in (40) has the desired FCLT. By Lemma 8 and the same argument in Lemma 6, the third term in (40) satisfies a
FCLT with a faster convergence rate and thus is negligible. This completes the proof.

Proof of Theorem 2. For a function f , denote its L2 normby L2(f ) = {
 1
c |f (t)|2dt}1/2. Note that |n−4/5

⌊nt⌋4/5−t4/5| ≤ n−4/5

uniformly for t ∈ [c, 1], and {t4/5[µ̂⌊nt⌋(x) − µ̂n(x)]}t∈[c,1] and {n−4/5
⌊nt⌋4/5[µ̂⌊nt⌋(x) − µ̂n(x)]}t∈[c,1] are asymptotically

equivalent. Thus, by Theorem 1 and the continuous mapping theorem,

µ̂n(x) − µ(x)
L2{n−4/5⌊nt⌋4/5(µ̂⌊nt⌋(x) − µ̂n(x)), t ∈ [c, 1]}

d
−→ ξ .

Since ⌊nt⌋ is piecewise constant, it is easy to verify L2{n−4/5
⌊nt⌋4/5[µ̂⌊nt⌋(x) − µ̂n(x)], t ∈ [c, 1]} = Vn, completing the

proof.

References

[1] P. Billingsley, Convergence of Probability Measures. Vol. 493, John Wiley & Sons, 2009.
[2] J. Fan, I. Gijbels, Local Polynomial Modelling and its Applications: Monographs on Statistics and Applied Probability 66, Vol. 66, CRC Press, 1996.
[3] J. Fan, Q. Yao, Nonlinear Time Series. Vol. 2, Springer, 2003.
[4] W. Hardle, A note on jackknifing kernel regression function estimators (corresp.), IEEE Trans. Inform. Theory 32 (2) (1986) 298–300.
[5] T. Honda, Nonparametric estimation of a conditional quantile for α-mixing processes, Ann. Inst. Statist. Math. 52 (3) (2000) 459–470.
[6] N.M. Kiefer, T.J. Vogelsang, Heteroskedasticity-autocorrelation robust testing using bandwidth equal to sample size, Econometric Theory 18 (06)

(2002) 1350–1366.
[7] N.M. Kiefer, T.J. Vogelsang, A new asymptotic theory for heteroskedasticity-autocorrelation robust tests, Econometric Theory 21 (06) (2005)

1130–1164.
[8] N.M. Kiefer, T.J. Vogelsang, H. Bunzel, Simple robust testing of regression hypotheses, Econometrica 68 (3) (2000) 695–714.
[9] S. Kim, Z. Zhao, Unified inference for sparse and dense longitudinal models, Biometrika 100 (1) (2013) 203–212.

[10] T. Lai, D. Siegmund, Fixed accuracy estimation of an autoregressive parameter, Ann. Statist. 11 (2) (1983) 478–485.
[11] Q. Li, J.S. Racine, Nonparametric Econometrics: Theory and Practice, Princeton University Press, 2007.
[12] I.N. Lobato, Testing that a dependent process is uncorrelated, J. Amer. Statist. Assoc. 96 (455) (2001) 1066–1076.

http://refhub.elsevier.com/S0047-259X(14)00224-3/sbref1
http://refhub.elsevier.com/S0047-259X(14)00224-3/sbref2
http://refhub.elsevier.com/S0047-259X(14)00224-3/sbref3
http://refhub.elsevier.com/S0047-259X(14)00224-3/sbref4
http://refhub.elsevier.com/S0047-259X(14)00224-3/sbref5
http://refhub.elsevier.com/S0047-259X(14)00224-3/sbref6
http://refhub.elsevier.com/S0047-259X(14)00224-3/sbref7
http://refhub.elsevier.com/S0047-259X(14)00224-3/sbref8
http://refhub.elsevier.com/S0047-259X(14)00224-3/sbref9
http://refhub.elsevier.com/S0047-259X(14)00224-3/sbref10
http://refhub.elsevier.com/S0047-259X(14)00224-3/sbref11
http://refhub.elsevier.com/S0047-259X(14)00224-3/sbref12


290 S. Kim et al. / Journal of Multivariate Analysis 133 (2015) 277–290

[13] D. Ruppert, S.J. Sheather, M.P. Wand, An effective bandwidth selector for local least squares regression, J. Amer. Statist. Assoc. 90 (432) (1995)
1257–1270.

[14] X. Shao, A self-normalized approach to confidence interval construction in time series, J. R. Stat. Soc. Ser. B Stat. Methodol. 72 (3) (2010) 343–366.
[15] X. Shao, Parametric inference in stationary time series models with dependent errors, Scand. J. Statist. 39 (4) (2012) 772–783.
[16] Q.M. Shao, H. Yu, Weak convergence for weighted empirical processes of dependent sequences, Ann. Probab. (1996) 2098–2127.
[17] X. Shao, X. Zhang, Testing for change points in time series, J. Amer. Statist. Assoc. 105 (491) (2010).
[18] S.J. Sheather, M.C. Jones, A reliable data-based bandwidth selection method for kernel density estimation, J. R. Stat. Soc. Ser. B 53 (3) (1991) 683–690.
[19] T.J. Vogelsang, Testing in gmmmodels without truncation, Adv. Econom. 17 (2003) 199–233.
[20] W.B. Wu, Z. Zhao, Inference of trends in time series, J. R. Stat. Soc. Ser. B Stat. Methodol. 69 (3) (2007) 391–410.
[21] Z. Zhou, X. Shao, Inference for linear models with dependent errors, J. R. Stat. Soc. Ser. B Stat. Methodol. 75 (2) (2013) 323–343.

http://refhub.elsevier.com/S0047-259X(14)00224-3/sbref13
http://refhub.elsevier.com/S0047-259X(14)00224-3/sbref14
http://refhub.elsevier.com/S0047-259X(14)00224-3/sbref15
http://refhub.elsevier.com/S0047-259X(14)00224-3/sbref16
http://refhub.elsevier.com/S0047-259X(14)00224-3/sbref17
http://refhub.elsevier.com/S0047-259X(14)00224-3/sbref18
http://refhub.elsevier.com/S0047-259X(14)00224-3/sbref19
http://refhub.elsevier.com/S0047-259X(14)00224-3/sbref20
http://refhub.elsevier.com/S0047-259X(14)00224-3/sbref21

	Nonparametric functional central limit theorem for time series regression with application to self-normalized confidence interval
	Introduction
	Main results
	Nonparametric FCLT for recursive estimates
	Self-normalization based confidence interval

	Numerical results
	Discussions and conclusions
	Acknowledgments
	Technical proofs
	Some results on mixing process
	Proof of Theorems 1--2

	References


