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We propose a quantile regression-based test to detect the presence of autoregressive conditional heteroscedasticity by com-
bining distributional information across multiple quantiles. A chi-square-type test statistic based on the weighted average of
distinct regression quantile estimators is formed. Unlike the widely used likelihood-based tests, the proposed test does not
make any distributional assumptions on the underlying errors. Monte Carlo simulation studies show that the proposed test
outperforms the likelihood-based tests in several aspects.
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1. INTRODUCTION

The autoregressive conditional heteroscedasticity (ARCH) model has been widely used to model the volatility of
economic and financial time series data since its introduction by Engle (1982). The ARCH model and its gener-
alizations, especially the generalized ARCH (GARCH) model (Bollerslev, 1986), provide an appealing structure
for the theory that the current volatility is determined by past observations. Furthermore, it is well known that
neglecting ARCH effects lead to some disadvantages including loss in asymptotic efficiency of parameter estima-
tion (Engle, 1982) and overparameterization of an autoregressive moving average model (Weiss, 1984). Thus, so
as to take advantage of the interpretability of the ARCH model and avoid the aforementioned disadvantages of
neglecting ARCH effects, it is necessary to test for the existence of conditional heteroscedasticity in time series
modelling.

Much effort has been devoted to developing tests to verify ARCH effects: the Lagrange multiplier (LM) test
(Engle, 1982), the locally most mean powerful based score (LBS) test exploiting the one-sided nature of the null
hypothesis (Lee and King, 1993), a test for ARCH effects in the frequency domain (Hong and Shehadeh, 1999)
and Monte Carlo simulation-based finite-sample tests (Dufour et al., 2004). Many of the existing tests of ARCH
effects are based on the likelihood function of the errors, so they require distributional assumptions. For example,
the LM test statistic (Engle, 1982) has a chi-square asymptotic distribution with p degrees of freedom when
the errors are normally distributed. However, it should be emphasized that the normality assumption is naturally
incorrect in financial return data that the ARCH process is originally designed to model. As is well known, these
data typically follow an asymmetric and heavy-tailed distribution reflecting traders’ behaviours. Traders usually
react more strongly to negative news than positive news and often react extremely to an event. Nevertheless, the
LM test has been widely used for non-normal cases, but the asymptotic properties of the statistic are not clear
when the errors are not normally distributed.
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To alleviate the aforementioned issue, a quantile regression (QR)-based method is proposed. QR-based
approaches explore the distribution of the errors, while likelihood-based methods assume a distribution. Despite
this attractive feature, little has been done to develop tests for ARCH effects using QR. Koenker and Zhao (1996)
mentioned inference based on stacking several distinct regression quantile (RQ) estimators but did not construct an
ARCH effects test. Furno (2004) proposed the RQ test to verify the presence of heteroscedasticity when comparing
the slope parameters of the regressions computed at different quantiles.

Recently, there has been a growing interest in studying QR-based estimation combining information across
multiple quantiles under various frameworks. Some of these works include simple linear models (Koenker, 1984;
Portnoy and Koenker, 1989; Zou and Yuan, 2008), the GARCH model (Xiao and Koenker, 2009), non-parametric
regression models (Kai et al., 2010), a broad range of regression models (Zhao and Xiao, 2014) and time-varying
coefficient longitudinal models (Kim et al., 2014) among others. These references reveal that the estimates con-
structed by properly aggregating information across multiple quantiles are more efficient than the least squares
estimate when the errors are not normally distributed and they convey almost equivalent performance when the
errors are normal.

Motivated by the fact that a combination of multiple quantiles can afford a more complete knowledge of the
unknown distribution, a powerful and distribution-free QR-based test is established. First, we address the asymp-
totic normality of the RQ estimator at a single quantile and form a chi-square-type ARCH effects test at any
quantile under the null hypothesis of no ARCH effects. Then, we propose an idea to combine information across
multiple quantiles. The proposed test called the weighted average quantile (WAQ) test employs a weighted average
of the RQ estimators at multiple quantiles to derive a test statistic. For comparison, another QR-based test moti-
vated by the idea of Koenker and Zhao (1996), which stacks several RQ estimators, is also constructed. Unlike
likelihood-based tests, our proposed WAQ test does not impose any distributional assumptions, and moreover, it
automatically makes use of the unknown distributional information. Simulation studies indicate that the proposed
WAQ test outperforms the widely used LM test as well as the LBS test.

The remainder of this article is organized as follows. Section 2 introduces the QR-based test using a single
quantile. In Section 3, we introduce two ARCH detection tests combining information across multiple quantiles.
Section 4 presents simulation results. Proofs are provided in Section 5.

2. ARCH EFFECTS TEST BASED ON QUANTILE REGRESSION

In this article, we consider an ARCH model of order p given by

Xi D �i"i ; i D 1; : : : ; n; where �i D ˇ0 C ˇ1jXi�1j C � � � C ˇpjXi�pj; (1)

where "i are i.i.d. random variables with E."i / D 0 and var."i / D 1 and are independent of past observations
Xi�1; Xi�2; : : :. The coefficients ˇ0 > 0; 0 � ˇj < 1 for j D 1; : : : ; p satisfy

Pp

jD1 ˇj < 1 to ensure a
stationary solution. The structure of the conditional variance in (1) is slightly different from the original quadratic
form of the ARCH model proposed by Engle (1982) given by

Xi D �i"i ; i D 1; : : : ; n; where �2i D ˇ0 C ˇ1X
2
i�1 C � � � C ˇpX

2
i�p: (2)

As noted by Xiao and Koenker (2009), the linear ARCH model in (1) is less sensitive to extreme returns than the
quadratic ARCH model in (2). Also, the linear structure is commonly employed in the literature on QR for the
ARCH or GARCH model because of its suitable structure (Koenker and Zhao, 1996; Xiao and Koenker, 2009).

Our goal in this paper is to test the null hypothesis of no ARCH effects defined as

H0 W ˇ1 D � � � D ˇp D 0; or equivalently �i D ˇ0 is constant: (3)
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When the previous null hypothesis is tested, the choice of order p is not critical. The primary concern in testing
ARCH effects is to detect the existence of conditional heteroscedasticity. Thus, once the null hypothesis in (3) is
rejected, we can select an appropriate model using Akaike information criterion or Bayesian information criterion.
For detailed discussions, see chapter 4.2.3 in the work of Fan and Yao (2005). In this sense, the proposed tests in
this article are readily extended for testing GARCH effects because under a mild condition, a strictly stationary
GARCH (p,q) is effectively an ARCH (1).

So as to develop a hypothesis test of ARCH effects, we do not directly use the ARCH model in (1). Let Yi D
jXi j; ei D j"i j; Zi D .1; Yi�1; : : : ; Yi�p/

T and ˇ D .ˇ0; ˇ1; : : : ; ˇp/
T . Taking the absolute value of both sides

of (1), we have

Yi D �i j"i j D .ˇ0 C ˇ1Yi�1 C � � � C ˇpYi�p/ ei D Z
T
i ˇei ; i D 1; : : : ; n:

Since all the coefficients and the components of Zi are non-negative, �i is invariant under the transformation,
and thus, the null hypothesis can be tested with the absolute value series ¹Y1; Y2; : : : ; Ynº. Denote by Qe.�/ the
�-quantile of ei and by QYi jZi .�/ the conditional �-quantile of Yi given Zi . Then, we can write

QYi jZi .�/ D Z
T
i ˇQe.�/ D Z

T
i ˇ.�/; where ˇ.�/ D Qe.�/ˇ:

Applying QR, we obtain the � th RQ estimator

Ǒ.�/ D argmin
b

X
i

��
�
Yi �Z

T
i b
�
; (4)

where �� .´/ D ´¹��1.´ � 0/º is the quantile loss function at a quantile � 2 .0; 1/ and 1.�/ is an indicator function.
In particular, � D 0:5 corresponds to the least absolute deviation estimator. It is worth noting that formulating the
RQ estimator in terms of the absolute value Yi D jXi j is not necessary to derive the asymptotic properties of Ǒ.�/.
Koenker and Zhao (1996) studied asymptotic properties of an RQ estimator Q̌.�/ D argminb

P
i ��

�
Xi �Z

T
i
b
�

with the original response Xi . For � 2 .0; 1/; Ǒ.�/ and Q̌.�/ are consistent estimators of Qe.�/ˇ and Q".�/ˇ
respectively, where Q".�/ is the �-quantile of "i . In other words, they identify ˇ up to a scaling factor but in fact
estimate different quantities.

There are several nice features of Ǒ.�/ over Q̌.�/ for developing ARCH effects test. First, Ǒ.�/ and Q̌.�/ estimate
0 when either ˇ D 0 or Qe.�/ D 0 and Q".�/ D 0 respectively, where 0 is a zero column vector. Without
prior information about the underlying distribution, we do not know where Q".�1/ D 0. Thus, extra work is
necessary to find �1 to avoid power loss in hypothesis testing. In contrast, since Qe.0/ D 0 regardless of the type
of distribution, any quantile � 2 .0; 1/ can be used for Ǒ.�/ immediately. Second, when the density function of the
errors "i is symmetric about 0, if Q̌.�/ is employed to construct the proposed test statistic in Section 3.1, which
aggregates distributional information across multiple quantiles, then the test statistic is a consistent estimator of
0 under both the null and alternative hypotheses. As a result, it leads to poor power in testing ARCH effects. See
Remark 1, for more discussion. In this paper, we focus on testing ARCH effects rather than focusing on estimation
of the parameters.

Throughout the rest of the article, for a random vector Z, we write Z 2 Lq; q > 0 if kZkq WD ¹E.jX jq/º1=q <
1. Consider the following regularity conditions.

Assumption 1.
(i) "i is independent of Fi�1 D � ."i�1; "i�2; : : : / for all i.

(ii) Denote by Fe and fe the distribution and density function of ei respectively. fe is positive, continuous and
bounded on ¹u W 0 < Fe.u/ < 1º.
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(iii) ¹Yi ; Yi�1; : : : ; Yi�pº is an ˛-mixing stationary process with Yi 2 Lı for some ı > 2, and the mixing
coefficient ˛k satisfies

P1
kD1 ˛

1�2=ı

k
<1.

(iv) E
�
Z1Z

T
1

�
is positive definite.

The regularity conditions are mild and commonly imposed in time series analysis. Under these conditions, we
can derive the asymptotic normality of Ǒ.�/.

Theorem 1. Suppose that Assumption 1 holds. Define Vk D E
�
Z1Z

T
1
=�k
1

�
.

(i) Then, we have the asymptotic Bahadur representation

Ǒ.�/ � ˇ.�/ D
V �1
1

nfe.Qe.�//

nX
iD1

Zi ¹� � 1 .ei < Qe.�//º C op.1/: (5)

(ii) The following asymptotic normality holds

p
n
°
Ǒ.�/ � ˇ.�/

±
) N

�
0;

�.1 � �/

f 2e .Qe.�//
V �11 V0V

�1
1

�
: (6)

As discussed earlier, Theorem 1 demonstrates that for � 2 .0; 1/; Ǒ.�/ is a consistent estimator of ˇ.�/. Denote
by ˇ� D .ˇ1; : : : ; ˇp/

T the vector of all elements of ˇ, but the intercept ˇ0 and by Ǒ�.�/ the vector of its
corresponding RQ estimator at a quantile � . So as to test the null hypothesis of no ARCH effects, it is not necessary
to estimate ˇ directly because when ˇ� D 0 (i.e. when the null hypothesis is true), Ǒ�.�/ is a consistent estimator
of 0 regardless of the choice of � . In addition, Qe.�/ is non-negative since ei D j"i j. Thus, so as to test ARCH
effects, it is sufficient to test the null hypothesis

H0.�/ W ˇ1.�/ D � � � D ˇp.�/ D 0; (7)

for any � 2 .0; 1/.
Denote by fY and QY .�/ the density function of Yi and the �-quantile of Yi respectively. Since �i D ˇ0 is

constant under the null hypothesis, we have fY .QY .�// D fY=�i .QY=�i .�//=�i D fe.Qe.�//=�i , and thus, we
can simplify the limiting variance in (6).

Corollary 1. Suppose that Assumption 1 holds. Under the null hypothesis of no ARCH effects, we have

p
n
°
Ǒ.�/ �

�
ˇ0; 0T

�T ±
) N

�
0;
�.1 � �/V �1

0

f 2
Y
.QY .�//

�
: (8)

The limiting variance of the null distribution in (8) is invariant under the value of the variance �i D ˇ0.
Consequently, the proposed test statistic later is not affected by ˇ0. Intuitively, it is reasonable because the value
of ˇ0 – that is, the variance of the errors under the null hypothesis – should not influence the result of an ARCH
effects test. Based on the previous discussion, we can form a chi-square-type ARCH effects test at each quantile
� , as shown in Corollary 2.
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Corollary 2. Suppose that Assumption 1 holds. Let W be the sub-element of V �1
0

corresponding to ˇ�.�/.
Then, under the null hypothesis in (7), we have

T .�/ WD
nf 2
Y
.QY .�//

�.1 � �/
Ǒ�.�/TW �1 Ǒ�.�/) �2p; (9)

where �2p is the chi-square distribution with p degrees of freedom.

A hypothesis test for ARCH effects can be performed with the test statistic T .�/ in (9). However, a problem
with this QR-based test is that the value of the test statistic may change substantially with respect to the quantile
� and the distribution of Yi . This instability may be caused by using partial distributional information, and thus,
there is a need to develop a method integrating the partial information that each quantile contains.

3. ARCH EFFECTS TESTS ACROSS MULTIPLE QUANTILES

3.1. Weighted Average Quantile Test

As discussed in Section 2, each quantile involves partial information, and thus, it is desirable to aggregate distri-
butional information over quantiles. To this end, we adopt the weighted average of multiple single RQ estimators
at different �’s as an aggregate estimator. Without prior information, it is reasonable to choose uniformly spaced
quantiles, but the derived results and proposed tests in this article can be employed with any sets of quantiles.
Throughout the rest of this article, let �r D r=.t C 1/; r D 1; : : : ; t , be t uniformly spaced quantiles and
w D .w1; : : : ; wt /

T be a vector of weights. Then, the WAQ estimator is defined as

Ǒ
QA.w/ D

tX
rD1

wr Ǒ.�r/;

tX
rD1

wr D 1; (10)

and the corresponding parameter ˇQA.w/ D
Pt

rD1wrˇ.�r/. Recall that ˇ� is the vector of all elements of ˇ but
the intercept ˇ0 and Ǒ�.�/ is its corresponding RQ estimate at a single quantile � . Since each Ǒ.�r/ estimates
ˇ.�r/ and not ˇ, ǑQA.w/ is not a consistent estimator of ˇ. However, since all ˇ.�r/ D Qe.�r/ˇ, r D 1; : : : ; t are
proportional to ˇ, all Ǒ�.�r/ are estimating 0 when the null hypothesis of no ARCH effects is true. Motivated by
this fact, we establish a new ARCH effects test combining information across multiple quantiles.

Theorem 2. Suppose that Assumption 1 holds. Define Ǒ�QA.w/ D
Pt

rD1wr
Ǒ�.�r/.

(i) Then, the following asymptotic normality holds

p
n
°
Ǒ

QA.w/ � ˇQA.w/
±
) N

�
0; sV �11 V0V

�1
1

�
; (11)

where s D
Pt

rD1

Pt

r 0D1

min.�r ;�r0/��r�r0
fe.Qe.�r//fe.Qe.�r0//

wrwr 0 .

(ii) Under the null hypothesis in (3), we have

p
n

8<
: ǑQA.w/ �

 
tX
rD1

wrˇ0.�r/; 0T
!T1A

9=
;) N

�
0; s0V �10

�
; (12)
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where s0 D
Pt

rD1

Pt

r 0D1

min.�r ;�r0/��r�r0
fY .QY .�r//fY .QY .�r0//

wrwr 0 .

(iii) Recall W in Corollary 2. Under the null hypothesis in (3), we have

TQA.w/ WD n Ǒ
�
QA.w/

T .s0W /�1 Ǒ�QA.w/) �2p; (13)

where �2p is the chi-square distribution with p degrees of freedom.

We call the test proposed in Theorem 2 the WAQ test. Employing a WAQ estimator for combining distributional
information is not a new technique. Koenker (1984) proposed and studied the weighted average of multiple RQ
estimates. Recently, Kim et al. (2014) and Zhao and Xiao (2014) constructed efficient estimation by optimally
weighting multiple RQ estimates. Unlike the test statistic at a single quantile in (9), we can take into account
multiple quantiles simultaneously by using ǑQA.w/, so that the test statistic in (13) guarantees a more robust
hypothesis test, not sensitive to the choice of � and the distribution of Yi .

The selection of weights could impact the performance of the proposed WAQ test. Therefore, we propose some
reasonable choices of weights.

Approach (i): Uniform weights. The simplest choice is the uniform weights

wU
r D

1

t
; r D 1; : : : ; t:

Approach (ii): Efficient weights. By reducing the variance, we may construct a powerful test. Kim et al.
(2014) find the optimal weights in the sense that s0 in (12) converges to the inverse of the
Fisher information of fY , which is the well-known optimal Cramér–Rao bound as the number
of quantiles goes to infinity. They also introduce the explicit expression of the optimal weights
when uniformly spaced quantiles are used. Let qr D fY .QY .�r//; r D 1; : : : ; t and q0 D
qtC1 D 0. With uniformly spaced quantiles,

wE
r D

.2qr � qr�1 � qrC1/ qrPt

rD1 .2qr � qr�1 � qrC1/ qr
; r D 1; : : : ; t:

Approach (iii): Sparsity function weights. The reciprocal of a density function evaluated at the quantile of
interest has been termed the ‘sparsity function’. To construct a more powerful test, we may
assign more weight to the quantiles whose Qe.�/ are larger. Then, when an ARCH effect
exists, the resultant standardized difference of Ǒ�QA.w/ from 0 may become larger, which leads
to a more powerful test. Recall ˇ.�/ D ˇQe.�/. Because the mode of most random variables
is close to the middle of its range, most of the area under the density function of ei D j"i j
is typically near 0 and the density function gradually decreases as ei increases. Thus, we pro-
pose weights assigned with respect to the sparsity function, which puts more weight on large
quantiles. For practical convenience, Yi is used instead of ei to compute the sparsity function
weights.

wS
r D

1

cfY .QY .�r//
; c D

tX
rD1

1

fY .QY .�r//
; r D 1; : : : ; t:

Remark 1. The aggregate estimate in (10) is also constructed by averaging single QR estimators from
argminb

P
i ��

�
Xi �Z

T
i
b
�

with the original response Xi instead of jXi j. Then, when the density function of the
errors "i is symmetric about 0, it makes sense to assign the same weight to the quantiles reflected at 0, as with the
proposed weights. Then, the corresponding parameter, ˇQA.w/ D ˇ

Pt

rD1wrQ".�r/, is always 0 regardless of
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the value of ˇ with uniformly spaced quantiles. By contrast, formulating the RQ estimator in terms of the absolute
value Yi D jXi j avoids the problem caused by symmetric density functions because Qe.�r/ are non-negative.

Remark 2. The proposed WAQ test is readily applied to the quadratic ARCH model in (2) with Yi D X2
i

and
ei D "

2
i
, and similarly all the asymptotic properties and test statistics earlier can be investigated. However, extreme

returns that the quadratic ARCH model often generates cause difficulties in estimating density functions evaluated
at large quantiles (i.e. � D 0:8; 0:9). As a result, the WAQ would be oversized in the quadratic ARCH model with
heavy-tailed distributions, and hence, to alleviate the issue, it requires a larger sample size.

3.2. Quantile Stacking Test

In this section, we introduce another hypothesis test for ARCH effects by combining information across multiple
quantiles. Koenker and Zhao (1996) noted that heteroscedasticity tests based on the joint asymptotic normality
of multiple RQ estimators Ǒ.�1/; : : : ; Ǒ.�t / might be constructed. Following their idea, we consider the t .p C 1/
vectors

Ǒ
QS D

°
Ǒ.�1/

T ; : : : ; Ǒ.�t /
T
±T

and ˇQS D
®
ˇ.�1/

T ; : : : ; ˇ.�t /
T
¯T

. ǑQS contains information about the parameters of interest across �1; : : : ; �t .
Furno (2004) also adopts this stacking idea to construct the RQ test for conditional heteroscedasticity. Denote by
˝ the Kronecker product.

Theorem 3. Suppose that Assumption 1 holds. Define Ǒ�QS D
°
Ǒ�.�1/

T ; : : : ; Ǒ�.�t /
T
±T

.

(i) Then, the following asymptotic normality holds

p
n
�
Ǒ

QS � ˇQS

�
) N.0; G/;

where G D H ˝
�
V �1
1
V0V

�1
1

�
with H D

²
min.�r ;�r0/��r�r0

fe.Qe.�r//fe.Qe.�r0//

³
1�r;r 0�t

.

(ii) Recall W in Corollary 2. Under the null hypothesis in (3), we have

TQS WD n
�
Ǒ�

QS

�T
G0�1 Ǒ�QS ) �2pt ; (14)

where G0 D H 0 ˝W with H 0 D
²

min.�r ;�r0/��r�r0
fY .QY .�r//fY .QY .�r0//

³
1�r;r 0�t

and �2pt is the chi-square distribution

with pt degrees of freedom.

We call the test proposed in Theorem 3 the quantile stacking (QS) test.

3.3. Testing Procedure

So as to implement the WAQ test and the QS test, we need to estimate the unknown quantities fY .QY .�// and
V0. For this task, we propose the procedure later.
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1. Estimate QY .�/ by the sample � th quantile of Yi denoted by OQY .�/. Then, estimate fY .QY .�// by the
non-parametric kernel density estimator:

OfY

�
OQY .�/

�
D

1

nhn

nX
iD1

K

 
OQY .�/ � Yi

hn

!
; (15)

where K.�/ is a non-negative kernel function and hn > 0 is a bandwidth satisfying hn ! 0 and nhn !1.
2. Estimate V0 D E

�
Z1Z

T
1

�
by n�1

Pn

iD1ZiZ
T
i

.
3. Test ARCH effects with the test statistics in (13) and (14).

In (15), we use the standard Gaussian kernel and adopt the ‘rule of thumb’ by Silverman (1986) for bandwidth
selection

hn D 0:9min¹sd.Yi /; IQR.Yi /=1:34ºn
�1=5;

where sd.Yi / and IQR.Yi / are the sample standard deviation and sample interquartile range of Yi respectively.

4. NUMERICAL RESULTS

In this section, we compare the following test statistics:

T .0:5/, the single QR-based test with � D 0:5;
TQS , the QS test;
TQA.w; t/, the WAQ test with weights w and t uniformly spaced quantiles;
LM, the LM test (Engle, 1982);
LBS, the LBS test (Lee and King, 1993).

The LM test statistic is nR2, where n is the sample size and R2 is the multiple correlation coefficient of jXi j
and .jXi�1j; : : : ; jXi�pj/. Note that the original LM test statistic for the quadratic ARCH model in (2) derived
in the work of Engle (1982) employs the multiple correlation coefficient of X2

i
and

�
X2
i�1

; : : : ; X2
i�p

�
to obtain

R2. The LBS test statistic that is asymptotically standard normal under the null hypothesis of no ARCH effects is

°
.n � p/

Pn

iDpC1

�
X2
i
= O�2 � 1

�Pp

jD1X
2
i�j

±
=
°Pn

iDpC1

�
X2
i
= O�2 � 1

�2±1=2
²
.n � p/

Pn

iDpC1

�Pp

jD1X
2
i�j

�2
�
�Pn

iDpC1

Pp

jD1X
2
i�j

�2³1=2 ;

where O�2 is the maximum likelihood estimator of �2 assuming that the errors "i are i.i.d. N.0; �2/.
For comparison, two models are considered:

(Model I) ARCH(1) W Xi D .1C ˇ1jXi�1j/"i ; i D 1; : : : ; nI

(Model II) ARCH(2) W Xi D .1C ˇ2jXi�2j/"i ; i D 1; : : : ; n:

Model II is used to examine how powerful the tests are in detecting a remote ARCH effect. For the error process
¹"iº1�i�n, we consider various distributions to investigate the performance of the tests: the standard normal;
the centred chi-square distribution with 4 degrees of freedom to examine the impact of skewness; the Student’s

J. Time. Ser. Anal. 36: 26–38 (2015) Copyright © 2014 Wiley Publishing Ltd wileyonlinelibrary.com/journal/jtsa
DOI: 10.1111/jtsa.12089



34 S. KIM

Table I. Empirical sizes and powers of TQA.w; t/ in percentages for Model I with five distributions: N(0,1); centred chi-
square distribution with 4 degrees of freedom (�4); Student’s t -distribution with 3 degrees of freedom (t3); normal mixture

(mix): 0:5N.0; 1/C 0:5N.0; 4/; standard laplace distribution (laplace)

n D 50 n D 100

Error ˇ1 TQA.5/ TQA.9/ TQA.19/ TQA.5/ TQA.9/ TQA.19/ TQA.w
E ; 9/ TQA.w

S ; 9/

N(0,1) 0 3.60 3.95 4.12 4.30 4.30 4.49 1.77 4.66
0.1 6.11 6.49 7.34 9.19 10.02 10.64 4.40 11.22
0.2 13.69 15.10 15.77 24.94 27.10 29.19 10.69 29.68
0.3 26.30 28.84 30.22 48.91 52.72 55.80 21.75 57.09

�4 0 3.90 4.33 4.40 4.39 4.79 4.78 3.77 6.63
0.1 30.09 31.12 28.70 53.63 54.37 54.07 34.78 50.28
0.2 69.83 70.56 66.13 94.48 94.55 94.49 74.61 91.43
0.3 92.50 92.80 84.34 99.58 99.64 99.64 93.23 98.42

t3 0 4.61 4.86 4.29 4.47 4.94 5.77 3.80 5.50
0.1 14.34 15.34 14.10 23.93 24.32 25.39 14.33 20.93
0.2 31.38 32.68 28.91 51.75 53.25 54.18 30.15 45.81
0.3 49.03 50.04 44.18 76.33 77.52 78.21 49.06 70.38

Laplace 0 3.79 3.93 4.12 3.59 4.35 4.27 1.62 4.45
0.1 10.90 11.45 11.44 16.46 17.19 18.25 5.65 16.99
0.2 23.01 24.79 24.53 40.98 42.77 44.88 15.76 40.46
0.3 39.54 42.28 40.71 64.91 68.98 70.18 29.73 65.50

Mix 0 3.69 3.88 3.70 4.51 4.27 4.49 1.65 4.18
0.1 23.25 25.25 24.59 37.84 41.15 44.51 14.94 38.22
0.2 53.25 57.55 54.38 78.43 82.33 84.79 48.56 78.68
0.3 75.23 78.84 69.14 95.02 96.57 97.23 75.95 94.01

The nominal size is 5%.

t-distribution with 3 degrees of freedom; the standard laplace distribution; and a normal mixture distribution
to study the impact of kurtosis. The simulations are implemented with 50 and 100 observations with 10,000
replications and investigate the empirical size and power properties of the tests with the nominal level of 5%.

4.1. Choice of the Number of Quantiles and Weights

Before comparing the proposed WAQ test with the likelihood-based tests, we explore the influence of the number
of quantiles and weights on the WAQ test. For notational simplicity, let TQA.t/ D TQA.wU; t /. So as to examine
the impact of the number of quantiles, Table I reports the empirical sizes and powers of TQA.5/; TQA.9/ and
TQA.19/ for Model I. Although TQA.9/ and TQA.19/ deliver the best performance with 50 and 100 observations
respectively, the simulation results suggest that the number of quantiles is not a crucial factor in the performance
of the WAQ test if it is not too small. It is worth mentioning that when we implemented the WAQ test with 50
observations for heavy-tailed distributions, TQA.19/ sometimes produces extremely large values of s0 in (12),
which results in numerical singularity since the estimate of fY .QY .0:95// is almost 0 on occasion. To circumvent
this computational issue, nine uniformly space quantiles are adopted for the comparison with the other tests.

From the results earlier and other practices on QR, a rule-of-thumb choice for the number of quantiles is pro-
posed. Denote by bvc the integer part of v. We recommend t D bn=5c for n < 100 and t D 19 for n � 100. Then,
the WAQ test can avoid computational issues mentioned in the preceding paragraph and still make use of enough
distributional information. We do not suggest using too many of equally spaced quantiles for a couple of reasons.
First, the RQ estimates at extremely large quantiles contain considerably larger variability than the others. As a
result, the test could be oversized especially with heavy-tailed distributions. Second, when � is very close to 0, we
may lose power because Qe.�/ � 0.

In addition to TQA.t/, Table I also displays the empirical sizes and powers of TQA.wE ; 9/ and TQA.wS ; 9/
with 100 observations to study the effect of the choice of weights. Unlike the number of quantiles, the choice
of weights has a strong influence on the performance of the WAQ test. Among the three weights considered,
the uniform weights deliver the best overall performance, so they are used to compare with the other tests.
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Table II. Empirical sizes and powers of the five autoregressive conditional heteroscedasticity effects tests
considered in percentages for Model I

n D 50 n D 100

Error ˇ1 T.0:5/ TQS TQA.9/ LM LBS T.0:5/ TQS TQA.9/ LM LBS

N(0,1) 0 2.42 4.11 3.95 4.74 4.36 2.98 2.71 4.30 4.58 4.29
0.1 3.97 7.10 6.49 7.10 10.96 6.00 7.35 10.02 10.75 17.63
0.2 8.11 14.14 15.10 15.12 22.83 13.75 18.03 27.10 29.43 37.32
0.3 13.62 24.07 28.84 28.11 35.44 26.59 37.00 52.72 55.08 58.55

�4 0 2.29 8.98 4.57 3.53 4.48 2.84 8.05 4.79 4.09 4.73
0.1 18.84 29.82 31.12 23.08 22.12 31.15 46.35 54.37 44.82 34.91
0.2 46.18 63.85 70.56 61.28 51.33 74.35 90.12 94.55 89.86 73.90
0.3 72.84 88.23 92.80 85.07 71.25 94.06 99.25 99.64 98.73 88.41

t3 0 3.33 10.48 4.92 3.16 3.54 3.58 9.32 4.94 3.44 4.08
0.1 10.90 22.72 15.34 8.68 9.96 17.56 28.80 24.32 16.38 14.60
0.2 22.05 37.95 32.68 20.95 20.36 37.90 52.36 53.25 41.05 30.16
0.3 34.19 52.19 50.04 37.94 29.84 57.70 73.50 77.52 65.63 47.51

Laplace 0 3.36 8.16 4.04 3.79 4.36 3.60 5.81 4.35 4.30 4.86
0.1 7.23 17.11 11.45 8.95 11.60 10.87 18.94 17.19 15.65 17.28
0.2 15.18 30.43 24.79 20.12 21.62 24.92 39.63 42.77 38.90 36.78
0.3 24.54 44.74 42.28 34.04 31.25 43.72 62.54 68.98 63.04 52.96

Mix 0 2.77 10.51 4.05 3.59 4.27 2.95 7.72 4.27 4.51 5.02
0.1 13.73 32.67 25.25 19.76 21.98 24.59 42.21 41.15 39.00 39.15
0.2 36.11 60.38 57.55 45.82 35.45 63.32 79.51 82.33 78.26 63.13
0.3 60.07 79.46 78.84 67.89 46.28 87.39 95.45 96.57 94.39 72.95

LM, Lagrange multiplier; LBS, locally most mean powerful based score. The empirical sizes close to the nominal level,
those inside the 3:5–6:5% range, are in italics, and the largest empirical powers among them are reported in bold.

TQA.w
S ; 9/ produces comparable performance with TQA.9/ for the non-normal errors considered and conveys

slightly better performance with the standard normal errors. Therefore, the sparsity function weights are an alter-
native choice when the errors are symmetric and not heavy tailed. It is interesting to note that TQA.wE ; 9/ has
much smaller power than the other two tests. To reduce the variance, weights are assigned mostly to small quan-
tiles having smaller variance, so that the resultant test statistics are relatively small and consequently less powerful.
Based on the previous discussion, we recommend the uniform weights in practice because of its simplicity and
powerful performance.

4.2. Performance in the Quadratic ARCH Model

The empirical sizes and powers of the five tests listed in Section 4 are presented in Tables II and III. In Table II,
as mentioned by Lee and King (1993) and references therein, the LM test is slightly undersized with a small
sample size especially when non-normal errors are considered. In contrast, the empirical sizes of the WAQ test
and the LBS test are quite close to the nominal level regardless of the type of the error distributions considered.
For the standard normal distribution, the LBS test is most powerful although the WAQ test and the LM test have
comparable performance. The result is reasonable because the LBS test is built using the normality assumption.
For the other distributions considered, the WAQ test is most powerful and delivers superior performance compared
with the other methods, and the LM test outperforms the LBS test. The QS test is often significantly oversized, but
its empirical powers are almost the same as those of the WAQ test. Furno (2004) reports the similar empirical size
results for the QS test.

It is interesting to see that for a remote ARCH effect (Model II), the WAQ test is the only one having good
empirical sizes with 50 observations and non-normal errors. The LBS test is even more undersized than the LM
test. Furthermore, even for the standard normal distribution, the WAQ test performs almost equivalently to the
tests developed under the normality assumption. Overall, the WAQ test detects a remote ARCH effect more sensi-
tively than the other tests. In summary, we conclude that the WAQ test significantly outperforms the widely used
likelihood-based tests in the sense of its accurate size, larger power and robust performance to error distributions.
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Table III. Empirical sizes and powers of the five autoregressive conditional heteroscedasticity effects tests
considered in percentages for Model II

n D 50 n D 100

Error ˇ2 T.0:5/ TQS TQA.9/ LM LBS T.0:5/ TQS TQA.9/ LM LBS

N(0,1) 0 1.45 2.34 3.12 4.33 2.83 2.04 1.48 3.83 4.69 3.86
0.1 2.40 3.79 5.16 5.72 6.07 4.16 3.62 8.12 9.34 11.05
0.2 4.64 7.01 10.27 11.20 12.05 9.67 10.24 21.48 23.24 22.74
0.3 8.72 13.28 20.82 21.73 17.99 18.23 21.82 42.39 44.66 36.78

�4 0 1.47 9.11 4.61 3.47 2.81 2.21 8.75 4.75 3.62 3.45
0.1 13.41 21.16 23.31 16.28 12.35 24.61 33.07 45.36 36.35 22.22
0.2 38.55 47.71 62.07 51.25 30.04 67.25 78.05 90.66 83.56 52.47
0.3 66.24 76.62 89.00 79.09 48.83 91.34 97.25 99.52 97.12 72.95

t3 0 3.34 10.52 5.04 2.93 2.17 4.45 9.54 5.28 3.87 3.12
0.1 9.50 19.10 13.12 6.89 5.21 14.10 22.55 20.70 12.68 9.70
0.2 17.27 29.52 26.06 15.60 10.34 30.53 42.07 46.29 32.93 19.76
0.3 29.28 43.04 43.34 28.53 17.94 50.02 61.94 70.63 55.84 30.49

Laplace 0 2.67 7.05 3.64 3.45 2.69 3.11 5.12 4.03 4.30 3.67
0.1 5.36 13.24 8.67 6.24 6.24 8.32 12.73 13.08 11.28 11.08
0.2 11.06 22.64 20.16 14.78 11.84 19.72 28.51 34.72 31.10 22.16
0.3 19.29 34.54 35.09 27.11 18.02 35.88 48.63 60.40 55.13 33.91

Mix 0 2.72 9.73 3.75 3.64 2.87 2.85 7.39 3.79 3.90 3.70
0.1 9.71 26.53 19.55 14.46 11.46 18.00 32.09 34.09 30.41 24.09
0.2 29.61 51.53 49.91 37.93 21.57 56.28 70.55 77.14 71.18 42.56
0.3 52.69 71.36 73.91 57.97 25.77 83.63 91.20 94.86 90.42 51.41

LM, Lagrange multiplier; LBS, locally most mean powerful based score. The empirical sizes close to the nominal level,
those inside the 3:5–6:5% range, are in italics, and the largest empirical powers among them are reported in bold.

5. PROOFS

Write xn � yn if xn=yn ! 1; xn D O.yn/ if supn jxn=ynj <1, and xn D o.yn/ if xn=yn ! 0.
Proof of Theorem 1

(i) Recall Yi D jXi j; Zi D .1; Yi�1; : : : ; Yi�p/
T , ˇ D .ˇ0; : : : ; ˇp/

T and ˇ.�/ D Qe.�/ˇ. Let � D
p
n.b �

ˇ.�// and �i D ei �Qe.�/. Then, we can write

Yi �Z
T
i b D �iei �Z

T
i b D �i�i �

ZT
i
�

p
n
: (16)

Because Ǒ.�/minimizes the criterion function in (4), by (16) O� D
p
n
�
Ǒ.�/ � ˇ.�/

�
minimizes the following

re-parameterized function of �:

O� D argmin�L.�/; L.�/ D
nX
iD1

´
��

 
�i�i �

ZT
i
�

p
n

!
� �� .�i�i /

μ
:

Let ıi .�/ D ZTi �=
p
n. Employing Knight’s identity

�� .u � ı/ � �� .u/ D �ı¹� � 1.u � 0/º C
Z ı

0

¹1.u � s/ � 1.u � 0/ºds;

we can write

L.�/ D �An�C In; (17)
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where

An D
1
p
n

nX
iD1

ZTi ¹� � 1 .�i�i � 0/º D
1
p
n

nX
iD1

ZTi ¹� � 1 .ei � Qe.�//º ;

In D

nX
iD1

�i ; �i D

Z ıi .�/

0

1 ¹�i .ei �Qe.�// � sº � 1 ¹�i .ei �Qe.�// � 0º ds:

First consider In. Recall V1 D E
�
Z1Z

T
1
=�1

�
. Using the double expectation formula,

E.In/ D E¹E.InjZi /º D E

"
nX
iD1

Z ıi .�/

0

²
Fe

�
Qe.�/C

s

�i

�
� Fe.Qe.�//

³
ds

#

� E

´
nX
iD1

ı2
i
.�/

2�i
fe.Qe.�//

μ
D
fe.Qe.�//

2
�TV1�:

(18)

Let 	k D cov.�i ; �iCk/. Then, for ı > 2; 	0 � E
�
�2
1

�
�
®
E
�
j�1j

ı
�¯2=ı

, and by Proposition 2.5 by Fan and

Yao (2005), we have the ˛-mixing inequality j	kj � 8˛
1�2=ı

k

®
E
�
j�1j

ı
�¯2=ı

. Therefore,

var.In/ D n	0 C 2
n�1X
kD1

.n � k/	k � n

 
	0 C 2

n�1X
kD1

j	kj

!

� n
®
E
�
j�1j

ı
�¯2=ı  

1C 16

1X
kD1

˛1�2=ı
k

!
:

(19)

Notice that j�i j � jıi .�/j1.j�i j � jıi .�/j=�i / and jıi .�/j D O.1 C
Pp

jD1 Yi�j /=
p
n. Then, by the

dominated convergence theorem, E
�
j
p
n�i j

ı
�
! 0, so we can show var.In/ ! 0. Thus, by (17)–(19),

we have

L.�/ D fe.Qe.�//

2
�TV1� � An�C op.1/:

By the quadratic approximation and the convexity lemma (Pollard, 1991), the desired asymptotic Bahadur
representation follows:

O� D
V �1
1p

nfe.Qe.�//

nX
iD1

Zi ¹� � 1.ei < Qe.�//º C op.1/:
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(ii) Since Zi¹� � 1.ei < Qe.�//º are martingale differences with respect to the filtration Fi generated by
¹"i ; "i�1; : : : º, the desired asymptotic normality in (6) follows from Brown’s (1971) martingale central
limit theorem.

Proof of Theorem 2
By (5), we have the following asymptotic Bahadur representation:

tX
rD1

wr

°
Ǒ.�r/ � ˇ.�r/

±
D
V �1
1

n

nX
iD1

Zi

tX
rD1

wr

fe.Qe.�r//
¹�r � 1.ei < Qe.�r//º C op.1/:

Then, (11) is proved by the same argument as in the proof of Theorem 1 (ii) and cov ¹�r � 1.ei < Qe
.�r//; �s � 1.ei < Qe.�s//º D min.�r ; �s/ � �r�s . (13) follows from the delta method.
Proof of Theorem 3
By the Cramér–Wold theorem and the argument in the proof of Theorems 1 and 2, we can easily show the desired
result. We omit the details here.
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